
Optical characterization and bandgap engineering of flat and
wrinkle-textured FA0.83Cs0.17Pb(I1− xBrx)3 perovskite thin films

A. Tejada,1, 2, a) S. Braunger,2 L. Korte,2, b) S. Albrecht,3 B. Rech,2 and J. A. Guerra1, 2, c)
1)Departamento de Ciencias, Sección F́ısica, Pontificia Universidad Católica del Perú, Av. Universitaria 1801,
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The complex refractive indices of formamidinium cesium lead mixed-halide
(FA0.83Cs0.17Pb(I1 − xBrx)3) perovskite thin films of compositions ranging from x = 0
to 0.4, with both flat and wrinkle-textured surface topographies, are reported. Films
are characterized using a combination of variable angle spectroscopic ellipsometry and
spectral transmittance in the wavelength range of 190 nm to 850 nm. Optical constants, film
thicknesses and roughness layers are obtained point-by-point by minimizing a global error
function, without using optical dispersion models, and including topographical information
supplied by a laser confocal microscope. To evaluate the bandgap engineering potential
of the material, the optical bandgaps and Urbach energies are then accurately determined
by applying a band fluctuations model for direct semiconductors, which considers both
the Urbach tail and the fundamental band-to-band absorption region in a single equation.
With this information, the composition yielding the optimum bandgap of 1.75 eV for a
Si-perovskite tandem solar cell is determined.

I. INTRODUCTION

Organic-inorganic hybrid perovskite materials are cur-
rently one of the most promising materials for next gen-
eration solar cells1–10 and other optoelectronic devices,3,4

owing to their high cell efficiencies, high absorption,
direct bandgap, long carrier diffusion length, bandgap
tunability and low manufacturing costs.1–7,10 The use
of cesium mixed-cation lead mixed-halide perovskites
(FA1 − yCsyPb(I1 − xBrx)3) has also significantly im-
proved upon the stability issues of classical PV per-
ovskites like MAPbI3.

1,7,10 As such they hold great po-
tential for single junction cells and especially for dual
junction Si-perovskite tandem cells. Si solar cells are al-
ready approaching the 29% Shockley-Queisser efficiency
limit (with the current record at 26.6%11), and adding
an extra perovskite top cell can potentially increase ef-
ficiencies beyond 30% if tuned to the optimal 1.75 eV
bandgap.1–3,12

Therefore, accurate knowledge of the relation of the
complex refractive index ñ, optical bandgap and Ur-
bach energy, to perovskite composition is of great im-
portance. To date, most relevant studies on cesium
mixed-cation lead mixed-halide perovskites estimate the
bandgap from photoluminescence (PL) measurements,10

or from direct bandgap fits on an estimation of the ab-
sorption coefficient.1 Also, studies of the complex refrac-
tive index obtain ñ by fitting dispersion models to optical
data,7 which can lead to unwanted artifacts and biases
in the results.5
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In this work, the bandgap engineering potential of two
types of FA0.83Cs0.17Pb(I1 − xBrx)3 perovskite films is
studied. One presents a flat though somewhat uneven
surface topography, which appears to be typical for films
of this this type of perovskite manufactured by spin coat-
ing. The other presents an unusual, strongly wrinkled
self-texturing effect, that produces very optically diffuse
films. These may have significant potential for light trap-
ping schemes that can use the perovskite films as grown
and on flat substrates suitable for low-cost spin coating
processes, without requiring further processing of the lay-
ers to achieve sufficient light scattering inside the cell.

For both surface topographies, the complex refrac-
tive indices are determined in the wavelength range of
190 nm to 850 nm. This is achieved using a combination
of spectral transmittance (T ) and variable angle spec-
troscopic ellipsometry (VASE), which allows the calcu-
lation of the absorption coefficient in a wider dynamic
range than would be possible with ellipsometry only.13

The solution algorithm minimizes an error function on a
point-by-point basis, i.e. for each measured wavelength,
to achieve a self consistent calculation of the complex
refractive index, film thickness and root mean square
(rms) roughness layer thickness, without using disper-
sion models. The proposed optical models account for
film thickness variation, film surface roughness and in-
ternal reflections in the substrate. The optical bandgaps
and Urbach energies are subsequently determined using a
band fluctuations model for the absorption coefficient of
direct semiconductors, which describes both the funda-
mental band-to-band absorption region and the Urbach
tail in a single equation.5 From these results, the compo-
sition for the ideal bandgap of 1.75 eV for Si-perovskite
tandem cells is determined.
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II. EXPERIMENTAL DETAILS

A. Perovskite fabrication

Chemicals were purchased from TCI (lead(II) iodide
99.99% Pb, lead(II) bromide 99.99% Pb), Sigma-Aldrich
(anhydrous chlorobenzene, anhydrous dimethyl sulfox-
ide, anhydrous dimethylformamide), ABCR (cesium io-
dide 99.999% Cs) and Dyenamo (formamidinium iodide
98%), and were used as received.
The FA0.83Cs0.17Pb(IxBr1 − x)3 perovskite films were

grown on two side polished 500µm thick fused quartz
substrates (for optical measurements) as well as ordi-
nary glass slides (for topography measurements). In both
cases, the substrates were consecutively cleaned in ace-
tone, detergent (Mucasol 2 vol% in water), water and iso-
propanol in an ultrasonic bath for 15min, respectively.
Before layer deposition the substrates were dried in a N2

stream and treated in an UV ozone cleaner (FHR Anla-
genbau GmbH, UVOH 150 LAB) for 15min.
The perovskite layers were fabricated in a glove box

with an N2 atmosphere in close analogy to previously
reported procedures for these compositions.3,10 The pre-
cursor solutions for the various perovskite compositions
were obtained by mixing two 1.0M perovskite stock so-
lutions (see Table I) in appropriate ratios (see Table II).
The perovskite stock solutions were prepared by weighing
the respective solid starting materials into a 5.0mL volu-
metric flask and brought up to volume with dimethylfor-
mamide and dimethyl sulfoxide (4:1 volume ratio). The
precursor solutions were shaken at 60 °C for 30min and
left to cool down to room temperature before blending.

FA0.83Cs0.17PbI3(1) FA0.83Cs0.17Pb(I0.60Br0.40)3(2)

CsI 221mg, 0.85mmol 221mg, 0.85mmol

FAI 714mg, 4.15mmol 714mg, 4.14mmol

PbBr2 - 1.10 g, 3.00mmol

PbI2 2.31 g, 5.00mmol 922mg, 2.00mmol

DMF/
DMSO
(4:1)

Approx. 4.33mL (brought to 5.0mL volume
including solids)

Table I. Quantity of starting materials to obtain perovskite
stock solutions 1 and 2 with 1.0M concentration.

Perovskite composition Stock solutions (ratio)

FA0.83Cs0.17PbI3 1

FA0.83Cs0.17Pb(I0.90Br0.10)3 1 & 2 (3:1)

FA0.83Cs0.17Pb(I0.80Br0.20)3 1 & 2 (1:1)

FA0.83Cs0.17Pb(I0.70Br0.30)3 1 & 2 (1:3)

FA0.83Cs0.17Pb(I0.60Br0.40)3 2

Table II. Mixing ratios of stock solutions 1 and 2 to generate
the final perovskite precursor solutions used for layer fabrica-
tion.

Two deposition procedures were used to yield per-
ovskite layers with flat topographies (Procedure 1, P1)
and wrinkled topographies (Procedure 2, P2). P1: Per-
ovskite precursor solution (100µL) was spread on the

substrate and spun in a single step process with open spin
coater lid, 4000 rpm for 30 s with an acceleration time
of 1 s; during this process chlorobenzene (150µL) was
dripped from 1 cm distance on the center of the spinning
substrate after 25 s. The perovskite layer was directly
transferred onto a hot plate for annealing at 100 °C for
20min. P2: Perovskite precursor solution (100µL) was
spread on the substrate and spun in a two step process
with closed spin coater lid, 1000 rpm for 10 s with an ac-
celeration time of 1 s followed by 6000 rpm for 30 s with an
acceleration time of 3 s; during this process chlorobenzene
(150µL) was dripped from 1 cm distance on the center of
the spinning substrate after 42 s. The perovskite layer
was directly transferred onto a hot plate for annealing at
50 °C for 1min, then on a second hot plate at 100 °C for
20 min.

B. Optical measurements

Total spectral transmittance was measured with a
Perkin Elmer Lambda 1050 UV/VIS/NIR spectropho-
tometer with an integrating sphere from 250 nm to
1500 nm (5 nm step). The VASE curves were measured
with a Sentech SE 850 ellipsometer from 190 nm to 850
nm (∼1 nm step), with incidence angles from 20° to 70°,
in 10° increments. The flat film samples were measured
with the probing beam incident on the film side, while
the wrinkle-textured samples were measured through the
backside of the quartz substrate. This was due to the op-
tically diffuse nature of the wrinkle-textured films, which
often impeded the ellipsometer from collecting enough
light for proper measurements. Because the latter are
significantly depolarizing measurements, the degree of
polarization was also measured.

Film topography was measured using a Keyence VK-
X260 confocal 3D laser scanning microscope with a
408 nm laser at 50x magnification. Care was taken to
measure the glass-deposited films in locations similar to
those used in the quartz-deposited ones for the transmit-
tance and ellipsometry measurements.

To prevent film degradation, all samples were sealed in
plastic bags inside the N2 atmosphere of the glove box
and only removed just before measuring. Degradation
during the measurements themselves was considered neg-
ligible, as no significant change in the ellipsometry curves
was observed during the span of a measurement session.

III. OPTICAL ANALYSIS

A. Extraction of the complex refractive index

The complex refractive index ñ = n − ik, where n is
the refractive index and k is the extinction coefficient, is
obtained using a combination of spectral transmittance
and ellipsometry. This approach is chosen due to the
complementary nature of the two techniques: T obtains
plenty of information from the bulk of the probed film
and is thus very sensitive to the low absorption coeffi-
cients found in the fundamental absorption and trans-
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parent regions. However, as absorption increases, trans-
mittance approaches zero and no further information can
be obtained. Here, ellipsometry can be exploited as it is a
very surface sensitive technique which obtains most of its
information from the top layer of the film, and is there-
fore suitable for studying highly absorbing regions.13 The
use of two different techniques also adds more equations
to the system, further constraining the final solutions for
n and k.5,6

The most common strategy for extracting optical con-
stants is to fit curves generated with a dispersion model
for ñ to the experimental data.4,6,7,13 This has the ad-
vantages of being quick and yielding convenient equa-
tions for n and k. However, some insight into the fun-
damental properties of the sample is necessary to select
the appropriate dispersion model, and there are many
to choose from.13 If the model is inadequate, it can be
unclear whether certain features in ñ are genuine or if
they are artifacts caused by forcing an incorrect model.5

For lead halide perovskites in particular, the Forouhi-
Bloomer,4,6 Tauc-Lorentz4,7 and Drude-Lorentz4 disper-
sions have been used.

The approach used in this work instead is to self con-
sistently determine ñ for each individual wavelength, i.e.
’point-by-point’. This is done by numerically solving a
system of equations of the type shown in Eq. (1).

M
exp
i,j −Mth

j (ni, ki, λi) = 0 (1)

Here, M
exp
i,j is a vector containing entries representing

experimental optical data (in this case, T and/or VASE)

at the wavelength λi, and Mth
j (ni, ki, λi) is the theo-

retical value for M
exp
i,j as a function of λi, as well as of

discrete values for n and k chosen by the solution algo-
rithm. The index j runs through the independent mea-
surement sets, e.g. T , ψ, ∆. Assuming the film thick-
ness and other such parameters are known, in principle
only two measurement sets should suffice to obtain n (λ)
and k (λ). In practice, this typically yields noisy solution
curves with several artifacts,5 such as diverging solution
branches,14 discontinuities and non-physical values. The
reasons for this are two-fold: first, the solution process is

highly sensitive to measurement noise, as Mth
j is usually

very strongly dependent on ni and ki, such that small

variations in M
exp
i,j yield comparatively large variations

in ni and ki. Second, when solved numerically, a system
of only two equations such as this one often allows several
possible values for the algorithm to converge to.

To mitigate the aforementioned issues, redundancy is
increased by adding more measurement sets for the same
sample. In this work, this is done by adding ellipsometry
data obtained for several angles. Doing so averages out
the effect of measurement noise and constrains the num-
ber of possible solution curves for n and k. Similar results
have also been achieved using multi-sample analyses.8,9

B. Solution algorithm

The self consistent analysis is carried out by minimiz-
ing a global error function of the type shown in Eq. (2).

σ2
i (ni, ki, λi, df , dr) =[

T
exp
i − T th (ni, ki, λi, df )

]2
+∑

j

[
S
exp
2,i − Sth2 (ni, ki, λi, θj , df , dr)

]2
+

[
S
exp
3,i − Sth3 (ni, ki, λi, θj , df , dr)

]2
(2)

Here, T is transmittance, θj is the incidence angle for
the various ellipsometry measurements, and S2 and S3

are the second and third Stokes parameters, which are re-
lated to the usual ellipsometry measurements by Eq. (3),
where p is the degree of polarization13 The constants df
and dr are the film and rms roughness layer thicknesses,
respectively. 

S1 = −p cos (2ψ)
S2 = p sin (2ψ) cos (2∆)

S3 = −p sin (2ψ) sin (2∆)

(3)

S2 and S3 are chosen over ψ and ∆ as they tend to be
better fitting variables. This is attributed to their typical
value ranges being closer to each other and to those for
T . Consequently, the minimization algorithm does not
skew excessively towards one type of measurement. S1

provides no additional information to the system, so it
isn’t necessary to include it in the error function. An
example of a fit between the theoretical and experimental
curves obtained using this procedure is shown in Fig. 1.

The effects of surface micro roughness are not con-
sidered for T . This is because, for low rms values, the
resulting light scattering can be mostly compensated for
by measuring total transmittance instead of only specu-
lar transmittance. Note that this is entirely equivalent to
using the classical scalar scattering theory models for sur-
face roughness, which assume the total transmittance of
a rough sample to be equal to the specular transmittance
of an equivalent flat sample.14–17 On the other hand, it
is necessary to consider surface roughness in ellipsometry
(at least when probing on the film side, see section III C).
This is done by the typical Bruggeman effective medium
approximation (EMA), with a void fraction of 50%.5–9,13

As film and roughness layer thicknesses are not known
beforehand, they are determined by minimizing the total
error obtained from Eq. (2) for all wavelengths, as a
function of df and dr (see Eq. (4)).5

σ2
f,r (df , dr) =

N∑
i=1

σ2
i (ni, ki, λi, df , dr) (4)

Here, N indicates the total number of measured wave-
lengths. In practice, the wavelengths used for this step
should be limited to the region where T is noticeably
greater than zero, to maximize accuracy. Further details
on this procedure are outlined in a previous work.5
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Figure 1. Transmittance T (a), and VASE variables ψ (b) and
∆ (c) fit. Experimental curves (circles) and corresponding fits
(solid curves) obtained with the self consistent approach. The
example corresponds to a composition of x = 0. Solid curves
correspond to the region where transmittance and ellipsome-
try spectra overlap (250 to 850 nm) whilst dashed lines corre-
spond to theoretical curves calculated with ellipsometry data
only (190 to 250 nm).

C. Film topography considerations

Two types of films were studied: one with a gener-
ally flat, though still somewhat inhomogeneous topogra-
phy (Procedure 1, P1), and one with a strongly wrinkled
self-texturing effect caused by the deposition parameters
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Figure 2. Laser confocal microscope images of typical flat
(a) and wrinkle-textured (b) film topographies. They are the
results of film manufacturing procedures P1 and P2, respec-
tively. Note the considerably different height scale of the color
maps. Insets are normalized histograms displaying the height
distributions of each image.

(Procedure 2, P2). Examples of both are shown in Fig.
2. In order to obtain accurate estimates for n and k, the
effects of these topographies on the optical measurements
had to be considered. To this end, surface topography
images for each sample were recorded with a laser confo-
cal microscope. The images were leveled by mean plane
subtraction and smoothed with a Gaussian filter to re-
move high frequency noise and anomalous peaks.

To include the topography effects in the optical mod-
els, the height data in the images was then used to build
a histogram (see Fig. 2 insets), from which a normalized
probability distribution function f for the film height was
calculated. This could then be used to average the trans-
mittance and ellipsometry variables, as seen in Eqs. (5)
and (6), respectively.13,18,19

⟨T ⟩ =
∫
T (d+ t)f (t) dt (5)

⟨Sn⟩ =
∫
Sn(d+ t)f (t) dt (n = 1, 2, 3) (6)

Here, t is the height of a thickness variation layer on
top of a layer with constant thickness d (recalling section
III B, the roughness layer would be on top of the t layer).
Note that this is completely equivalent to averaging over
the imaging area, as seen in Eq. (7), where A is the
imaged area.16 The main advantage of averaging over
height frequency is increased calculation speed, as the
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integrals in Eqs. (5) and (6) are one-dimensional and
require far fewer computations of T (d+ t) and Sn (d+ t)
for the same level of precision.

⟨T ⟩ =
∫∫

A
T (d+ t (x, y)) dxdy (7)

The models for T and Sn to be averaged are stan-
dard ones obtained through Fresnel coefficient addi-
tion for the corresponding sample and probing beam
configurations.13,16 The refractive index for the fused
quartz substrate is modeled with a Sellmeier series, pre-
viously fitted to measurements of the substrate only. The
effect of internal reflections in the substrate is also con-
sidered.

With these considerations and those of section III B in
mind, the complex refractive index for the various flat
topography films are shown in Fig. 3. These samples are
analyzed with the ellipsometry probing beam incident on
the film side.

The wrinkle-textured films require some additional
considerations. Due to their optically diffuse nature, the
ellipsometer was often unable to collect enough light for
proper measurements. To get around this problem, these
samples were measured with the probing beam incident
on the substrate side of the sample, which required the
use of a depolarizing model that considers the incoherent
light passing through the quartz glass.13 Because of this,
the degree of polarization p was also measured to be used
in Eq. (3) (p ≈ 1 for the flat samples).

It was observed in practice that using a simplified ellip-
sometry model, assuming the film to be an infinite homo-
geneous medium beneath the quartz substrate, was just
as effective as the fully detailed model. This is attributed
to the large thickness of these films (∼1µm), the scatter-
ing effect of the wrinkled texturing and the intermediate
reflections in the substrate, which results in practically no
light reflected from the bottom layer of the sample reach-
ing the detector. This assumption breaks down slightly
as absorption approaches zero, but is compensated for
by the transmittance measurements, for which the com-
plete optical model is considered. While this may seem
inconsequential, it allowed the film thickness to be calcu-
lated much quicker, as Eq. (4) would then only depend
on df . With these considerations in mind, the complex
refractive index for the various wrinkle-textured films are
shown in Fig. 4.

There are some slight differences between the n (λ) and
k (λ) curves shown in Figs. 3 and 4, particularly in higher
energy regions. Even though the compositions for both
the flat and wrinkle-textured films are the same, they
were formed under different deposition conditions. This
could have yielded somewhat differing levels of atomic
disorder and therefore internal stresses within the bulk
material, which can distort the band structure and there-
fore ñ (λ) as well. Differences in the deep UV may be
partly due to the quartz substrate becoming slightly ab-
sorbing near 190 nm, as well as information loss due
to the depolarizing nature of the measurements for the
wrinkle-textured films.
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Figure 3. Refractive indices (a) and extinction coefficients (b)
of the flat topography perovskite films for various stoichiome-
tries. Here, x corresponds to FA0.83Cs0.17Pb(IxBr1 − x)3.
Solid lines correspond to calculations obtained from both T
and ellipsometry (250 to 850 nm), and dashed lines correspond
to the calculation performed with ellipsometry only (190 to
250 nm).

IV. BANDGAP CALCULATION

The optical bandgap Eg is calculated from the absorp-
tion coefficient α, which is obtained from the previously
calculated k values by α = 4πk/λ. The classical proce-
dure for achieving this, which uses a fundamental absorp-
tion model for optical band-to-band transitions in direct
bandgap materials, involves fitting a linear region located
near the absorption edge in a (α · ~ω)2-plot.20 This can
also be done using quantum efficiency measurements in a
similar fashion.21 While this is a very simple and straight-
forward approach, the linear region in question is arbi-
trarily delimited, and partial overlap with the Urbach tail
may result in few available measurement points as well as
a systematic bias in the yielded bandgap values.5,22 These
issues, which can limit the accuracy and reliability of the
procedure, can be compensated for by instead using a
model that considers a larger spectral region. For this
purpose, a band fluctuations model for direct semicon-
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Figure 4. Refractive indices (a) and extinction co-
efficients (b) of the wrinkle-textured perovskite films
for various stoichiometries. Here, x corresponds to
FA0.83Cs0.17Pb(IxBr1 − x)3. Solid and dashed lines have the
same meaning as in Fig. 3.

ductors developed in a previous work,5 which describes
both the Urbach tail and fundamental absorption region
in a single equation, is chosen (see Eq. (8)).

α (~ω) = −1

2

α0

~ω

√
π

β
Li1/2

(
−eβ(~ω−Eg)

)
(8)

Here, Lin (x) is the n-th order polylogarithm function of
x, α0 is a constant and β = 1/EU , with EU the Urbach
energy. A comparison between fits achieved with this
model and the direct bandgap model for all the samples
in this work is shown in Fig. 5.
From the fits in Fig. 5, the values for Eg and EU can

be extracted; they are shown in Fig. 6. Typical error
values for both Eg and EU are ±0.001 eV. Very good cor-
respondence between the bandgap values for the flat and
wrinkled films is observed, as well as between the band
fluctuations and conventional models. A slight offset can
be seen between the values obtained with either model,
which is attributed to the limitations of the conventional
strategy, outlined previously. The Urbach energies on
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Figure 5. Fitted absorption coefficients shown in (α · ~ω)2-
plots for the flat topography films (a) and the wrinkle-
textured films (b). Circles correspond to the absorption coeffi-
cients obtained from the k values in Figs. 3 and 4. Solid lines
correspond to fits with the band fluctuations model whilst
dashed lines to linear fits with the direct bandgap model.

the other hand, while generally increasing with Br con-
centration in both cases, are systematically different for
the two film morphologies. As the Urbach energy is in-
dicative of lattice disorder,22,23 the generally lower values
found for the wrinkle-textured films can be attributed to
the different deposition parameters. In particular, the
textured samples had a two-stage annealing process with
increasing temperatures (instead of a single stage process
for the flat samples), which may have resulted in larger
grain sizes. This can also partially account for the slight
differences in the complex refractive indices, shown in
Figs. 3 and 4 (see section III C).

Within the considered stoichiometries, the bandgap
increases quite linearly from 1.564 eV to 1.792 eV, with
a slope parameter dEg/dx of 0.575 eV (values averaged
between flat and wrinkle-textured films), which is con-
sistent with Vegard’s law.1 Thus the material’s optical
bandgap is not only highly tunable,1,10 but is so in a
predictable way within the range of x = 0 to 0.4. Fi-
nally, it is possible to interpolate the composition that
would yield the ideal 1.75 eV1–3,12 bandgap necessary for
a Si-perovskite tandem solar cell. This is determined to
be x = 0.33, or FA0.83Cs0.17Pb(I0.67Br0.33)3.
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Figure 6. Optical bandgap Eg (a) and Urbach energy EU

(b) obtained for the various perovskite stoichiometries. Solid
lines and diamond markers correspond to fits with the band
fluctuations model, whilst dashed lines and square markers
correspond to fits with the fundamental absorption model.

V. SUMMARY

To summarize, the complex refractive index for both
flat and textured topography FA0.83Cs0.17Pb(I1 − xBrx)3
perovskite films of various compositions was determined
(see Figs. 3 and 4). This was achieved using a combina-
tion of transmittance and ellipsometry at various angles
via a self consistent point-by-point approach using suit-
able optical models which included film thickness vari-
ation, surface roughness and internal reflections in the
substrate for maximal accuracy. The optical bandgap
and Urbach energy were then calculated using a band
fluctuations model for direct semiconductors, and com-
pared with a conventional fundamental band-to-band ab-
sorption model (see Figs. 5 and 6). In both cases, re-
sults show that the bandgap can predictably be tuned
within a considerable range (at least from 1.564 eV to
1.792 eV). Finally, the composition that would yield the
ideal 1.75 eV bandgap for a Si-perovskite tandem solar
cell is inferred to be FA0.83Cs0.17Pb(I0.67Br0.33)3.
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