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Abstract	

	 Silver’s	unique	ability	to	selectively	oxidize	ethylene	to	ethylene	oxide	

under	an	oxygen	atmosphere	has	long	been	known.	Today	it	is	the	foundation	of	

ethylene	oxide	manufacturing.	Yet,	the	mechanism	of	selective	epoxide	

production	is	unknown.	Here	we	use	a	combination	of	UHV	and	in	situ	

experimental	methods	along	with	theory	to	show	that	the	only	species	that	has	

been	shown	to	produce	ethylene	oxide,	the	so-called	electrophilic	oxygen	

appearing	at	530.2	eV	in	the	O	1s	spectrum,	is	the	oxygen	in	adsorbed	SO4	

(SO4,ad).	This	adsorbate	is	part	of	a	2D	Ag/SO4	phase,	where	the	non-

stoichiometric	surface	variant,	with	a	formally	S(V+)	species,	facilitates	selective	

transfer	of	an	oxygen	atom	to	ethylene.	Our	results	demonstrate	the	significant	

and	surprising	impact	of	a	trace	impurity	on	a	well-studied	heterogeneously	

catalyzed	reaction.	

	

Keywords	Ethylene	epoxidation,	electrophilic	oxygen,	silver,	partial	oxidation,	

XPS	

	

Introduction	

The	direct	 epoxidation	 of	 ethylene	 to	 ethylene	 oxide	 (EO)	 over	 silver	 is	

one	 of	 the	 most	 important	 heterogeneously	 catalyzed	 reactions	 practiced	 in	

industry1-6.	In	it,	an	oxygen	atom	from	O2	is	added	across	the	C-C	double	bond	of	

ethylene.	 This	 simplicity	 makes	 ethylene	 epoxidation	 a	 tractable	 means	 of	

studying	 selectivity	 in	 heterogeneous	 catalysis,	 where	 selectivity	 refers	 to	 the	

fact	that	EO	is	just	one	potential	reaction	product.	The	selectivity	to	be	explained	

is	amazing;	on	clean	silver	it	is	near	50%1-4	and	can	exceed	80%	with	the	use	of	
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promoters1-7.	 Yet,	 a	 mechanistic	 understanding	 consistent	 with	 experimental	

data	 has	 been	 lacking	 since	 the	 1931	 discovery	 of	 the	 reaction1-4.	 The	 first	

plausible	models	 dealing	with	 selectivity	 appeared	 in	 the	 1940s,	 postulating	 a	

special	 form	 of	 adsorbed	 oxygen	 selectively	 oxidizes	 ethylene	 to	 EO1-3.	 This	

species	became	known	as	electrophilic	oxygen	(Oelec)3.	Vigorous	debate	over	two	

models	 of	 Oelec—atomic	 or	 molecular	 oxygen—dominated	 the	 literature1-3,8-11	

until	 Oelec	 was	 found	 under	 vacuum	 above	 the	 O2	 desorption	 temperature9-12,	

igniting	interest	in	the	chemistry	of	adsorbed	atomic	oxygen.	With	the	aid	of	DFT	

calculations,	such	studies	led	to	development	of	a	mechanism	wherein	ethylene	

is	 predicted	 to	 react	with	 adsorbed	 atomic	 oxygen	 to	 form	 an	 oxametallacycle	

(OMC)	intermediate14-16.	And	while	oxygen	on	reconstructed	silver	surfaces	was	

found	 to	 selectively	produce	CO2	 through	 this	mechanism16,	when	 the	 reacting	

oxygen	is	adsorbed	on	an	unreconstructed	surface	EO	is	predicted	to	be	formed	

non-selectively14,15.	Recently,	however,	this	type	of	adsorbed	atomic	oxygen	was	

shown	to	be	incompatible	with	measurements	of	Oelec17-21.		

Although	Oelec	readily	forms	under	the	oxygen	chemical	potential	required	

for	epoxidation22-24,	it	is	challenging	to	generate	it	under	clean	conditions9-13—	

those	in	which	no	gas-phase	impurities	are	introduced.	Thus,	unlike	the	

nucleophilic	oxygen	(Onuc),	active	only	in	combustion13,17—where	established	

ultra-high	vacuum	(UHV)	preparations	allowed	its	structure	to	be	solved25-27—

surfaces	active	in	EO	production	during	temperature	programmed	reaction	

(TPR)	have	only	been	prepared	through	extensive	oxidation	at	ca.	500	K9,10	or	

exposure	to	epoxidation	conditions11-13.	While	these	studies	demonstrated	the	

EO-selective	species	seen	in	TPR	is	responsible	for	catalytic	epoxidation10,	they	

offered	only	puzzling	structural	insight.	For	instance,	experiments	relying	on	
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oxidative	preparations	revealed	such	treatments	lead	to	significant	dissolution	of	

O	into	Ag	and	that	Oelec	only	forms	in	the	presence	of	both	Onuc	and	dissolved	O	

(Odis)9,10.	Unfortunately	such	severe	treatment	leaves	little	chance	of	uncovering	

the	structure	of	the	EO-selective	species.	

A	method	of	preparing	dissolved	O,	Onuc,	and	Oelec	on	Ag(111)	single	

crystals	under	UHV	was,	however,	recently	developed18,19.	In	it,	Ag(111)	samples	

were	treated	by	repeated	NO2	oxidation/annealing	cycles,	leading	to	the	cyclic	

formation	and	decomposition	of	an	oxygen	species	with	an	O	1s	binding	energy	

(BE)	of	528.3	eV	(Onuc),	and	the	parallel,	slower	enrichment	of	a	second	oxygen	

species	on	the	surface	at	a	BE	of	530.7	eV.	The	formation	of	the	530.7	eV	species	

resembles	a	precipitation,	involving	segregation	of	Odis	to	the	surface.	

Surprisingly,	under	clean	conditions	the	530.7	eV	species	forms	an	ordered	

structure	giving	rise	to	a	 7 × 3 𝑟𝑒𝑐𝑡	low	energy	electron	diffraction	(LEED)	

pattern19.		

Herein	we	use	a	combination	of	experimental	and	computational	

approaches	to	show	the	 7 × 3 𝑟𝑒𝑐𝑡	phase	with	a	530.7	eV	O	1s	BE	is	the	

parent	phase	of	Oelec	prepared	by	thermal	oxidation.	We	go	on	to	show	this	Oelec	

forms	spontaneously	under	reaction	conditions	and	its	coverage	correlates	with	

EO	production.	

Results	

Electronic	and	atomic	structure	

	 To	solve	the	structure	of	the	 7 × 3 𝑟𝑒𝑐𝑡	surface	phase	we	turned	to	

density	functional	theory	(DFT),	LEED	I/V,	and	XPS	by	first	noting	that	only	

covalently	bound	O	has	ca.	530	eV	O	1s	BE17.	Thus,	we	considered	O	bound	to	

common	impurities;	only	S—a	ubiquitous	contaminant	of	ethylene28	and	Ag29—
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explains	the	observed	properties.	XPS/LEED	confirms	that	a	 7 × 3 𝑟𝑒𝑐𝑡	

reconstructed	surface	phase	contains	S	with	a	S:O	ratio	of	ca.	1:4,	Figure	1—note	

no	S	was	visible	in	XPS	when	the	oxidative	preparation	began.	DFT	calculations	

reveal	the	lowest	energy	Ag/SO4	structure	with	 7 × 3 𝑟𝑒𝑐𝑡	periodicity	has	an	

Ag9(SO4)3	stoichiometry,	Figure	1.	The	coordinates	from	the	DFT	relaxation	were	

used	as	the	starting	point	of	a	LEED	I/V	analysis.	The	model	obtained	from	this	

analysis,	after	an	extended	optimization	procedure,	was	identical	to	the	DFT	

model,	except	for	minor	displacements	in	the	atomic	positions.	In	the	unit	cell,	

three	SO4	moieties	are	bound	to	9	Ag	atoms	in	the	top	layer	(the	bare	surface	

would	contain	14	first	layer	Ag	atoms	in	the	cell),	and	6	of	these	9	atoms	are	

strongly	displaced	from	their	bulk	positions,	i.e.,	the	surface	is	reconstructed.	

	

	
Figure	1:	O	1s	and	S	2p	spectra	of	the	 7 × 3 𝑟𝑒𝑐𝑡	reconstruction;	S	2p3/2	reference	BEs	
(dashed	lines)30,31.	The	surface	phase	structure	computed	with	DFT	(bottom).	White	circles	show	
Agδ+	atoms	in	the	reconstructed	layer,	grey	Ag0	in	the	lower	layers,	red	O,	and	yellow	S.		
	

With	the	structure	of	the	 7 × 3 𝑟𝑒𝑐𝑡	reconstruction	solved,	we	

examined	the	core-level	BEs	of	its	constituent	atoms	to	gain	insight	into	its	

electronic	structure	and	forge	connections	with	previous	measurements12,13,22,23.	

The	average	computed	O	1s	(S	2p3/2)	BE	is	530.5	eV	(167.3	eV),	compared	to	the	

measured	530.7	eV	(167.5	eV),	differences	within	the	error	typically	associated	
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with	computed	binding	energies16.	The	computed	Ag	3d5/2	BE	of	the	Ag	atoms	in	

the	reconstructed	layer	is	0.4	eV	less	than	that	of	bulk	Ag,	indicating	Agδ+	

character.	

Oxidation	of	an	uncovered	Ag(111)	surface	is	known	to	form	a	𝑝 4 × 4 -O	

phase,	a	reconstruction	with	a	stoichiometry	of	the	first	layer	of	Ag12O6	25-27	

where	the	𝑝 4 × 4 	structure	is	reconstructed	with	12	Ag	atoms	per	unit	cell	

(instead	of	the	bare	surface’s	16)	and	6	O	atoms,	corresponding	to	an	Ag12O6	

stoichiometry.	The	oxygen	atoms	contained	in	this	phase	are	Onuc16.	On	a	surface	

partially	covered	by	the	 7 × 3 𝑟𝑒𝑐𝑡	structure18,19,	the	rest	is	empty	Ag(111),	

this	oxidation	can	be	described	by	two	limiting	reactions:	

3 O!,!"#       +       12 Ag!"#$%&'   ⇌ Ag!"O!.	 	 	 (1)	

and	

9 O!,!"#       +       4 Ag!(SO!)!   ⇌ 3 Ag!"O!  +  12 SO!,!".	 	 	 (2)	

In	Equation	1,	the	empty	portion	of	the	surface	reacts	with	oxygen	to	give	the		

𝑝 4 × 4 -O	reconstruction,	a	process	in	which	Ag	atoms,	mainly	from	step	sites,	

are	used	to	build	the	𝑝 4 × 4 -O	phase.	The	 7 × 3 𝑟𝑒𝑐𝑡	structure	is	unaffected	

by	Equation	1.	In	Equation	2,	the	number	of	Ag	atoms	in	a	reconstruction	

[Ag9(SO4)3	or	Ag12O6]	are	fixed.	The	resulting	adatom	competition	forces	the	

7 × 3 𝑟𝑒𝑐𝑡	reconstruction	to	be	lifted	in	order	to	liberate	the	Ag	atoms	used	to	

form	the	𝑝 4 × 4 -O	phase.	This	process	transforms	the	 7 × 3 𝑟𝑒𝑐𝑡	

reconstruction	into	a	phase	with	SO4	moieties	on	the	unreconstructed	Ag	

surface—SO4,ad.	To	see	under	which	conditions	these	limiting	reactions	can	occur	

we	must	compute	the	change	in	surface	Gibbs	free	energy	associated	with	each,	

which	we	denote	∆𝛾!	and ∆𝛾!	for	Equation	1	and	2,	respectively.	
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	 Using	the	facts	that	the	entropy	terms	of	the	solid	phases	tend	to	cancel	

and	that	the	pV	terms	are	negligible	allows	us	to	compute	∆𝛾!	and ∆𝛾!	with	DFT	

total	energies	and	gas-phase	thermochemistry	data32.	Assuming	both	reactions	

go	to	completion,	see	SI	for	details,	we	find	∆𝛾!	and ∆𝛾!	depend	both	on	the	

oxygen	chemical	potential	(ΔμO)	and	amount	of	free	surface	available.	Equation	1	

has	a	trivial	dependence	on	free	surface	area.	In	the	case	of	Equation	2,	however,	

the	dependence	is	complicated	by	the	fact	that	the	energy	of	SO!,!"	changes	with	

its	coverage,	𝛩!!! .	Thus,	∆𝛾!	depends	on	𝛩!!! .		

To	see	how	this	coverage	dependency	of	∆𝛾!	is	manifest	we	generated	a	

series	of	phase	diagrams	with	varying	𝛩!!! ,	see	Figure	2.		We	find	that	for	

Θ!!! ≳ 1/5 ML,	SO4,	ad	is	spontaneously	formed	(∆𝛾 < 0)	only	at	oxygen	chemical	

potentials	high	enough	to	form	bulk	Ag2O,	ΔμO=Δ𝐻!"!!
! ,		see	the	solid	blue	line	in	

Figure	2.	In	contrast,	formation	of	the	𝑝 4 × 4 -O	reconstruction	on	the	same	

surface	becomes	spontaneous	at	ΔμO	≳	-0.6	eV	(solid	black	line)—T	≲	600	K	at	1	

atm	O2	pressure.	Once	𝛩!!!drops	below	ca.	1/9	ML	however,	Equation	2	also	

becomes	spontaneous	at	ΔμO	≳	-0.6	eV	(dashed	blue	line),	though	it	is	only	

metastable	as	formation	of	the	𝑝 4 × 4 -O	reconstruction	through	Equation	1	is	

still	energetically	favored	on	the	same	surface	(dashed	black	line).	
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Figure	2:	Change	in	surface	free	energy	associated	𝑝 4 × 4 -O	formation	through	Equation	1	
(black	lines)	and	Equation	2	(blue	lines)	described	in	the	text,	where	ΔμO=

!
!
𝜇!! − 𝐻!! .		The	

experimental	value	of	Δ𝐻!"!!
! 	extrapolated	to	0	K33	is	indicated.	The	lines	were	computed	for	

two	different	fractions	of	free	surface.	In	case	A	(solid	lines)	reaction	(2)	gives	an	SO4,ad	phase	
with	Θ(SO4,ad)	=	1/5	ML	plus	the	corresponding	𝑝 4 × 4 -O	area,	and	reaction	(1)	takes	place	on	
a	surface	with	the	same	fraction	of	free	area	but	only	gives	the	𝑝 4 × 4 -O	phase.	Case	B	(broken	
lines)	is	analogous	but	uses	Θ(SO4,ad)	=	1/9	ML.	The	DFT	total	energy	of	the	SO4,ad	phases	was	
defined	using	linear	interpolation	of	the	value	at	three	coverages,	see	Figure	S4.	
	

Figure	2	shows	oxidation	of	a	surface	partially	covered	in	the	 7 ×

 3 𝑟𝑒𝑐𝑡-SO4	phase	can	lead	to	the	formation	of	a	metastable	phase	of	SO4,	ad.	If	

present,	our	calculations	reveal	this	SO4,	ad	could	be	distinguished	from	the	

parent	 7 × 3 𝑟𝑒𝑐𝑡-SO4	phase	by	way	of	XPS.	The	computed	Ag	3d5/2	BE	of	a	

surface	with	SO4,ad	indicates	three	Agδ+	sites	bond	to	SO4,ad—making	S	formally	

V+,	consistent	with	the	166.7	eV	computed	S	2p3/2	BE.	Its	average	computed	O	1s	

BE	is	0.7	eV	less	than	the	O	in	the	 7 × 3 𝑟𝑒𝑐𝑡-SO4	phase,	Table	S1.	

The	O	1s	spectrum	measured	after	oxidation	of	the	 7 × 3 𝑟𝑒𝑐𝑡	

reconstruction	confirms	the	appearance	of	SO4,ad	and	Onuc,	Figure	3.	Onuc	gives	the	

O	1s	peak	at	528.4	eV12,13,16,22,23.	The	peak	near	530	eV	is	broadened	due	to	the	

appearance	of	a	new	peak	on	the	low	BE	side	of	the	530.7	eV	peak.	Previous	in	

situ	work	unambiguously	showed	this	new	species	is	a	530.2	eV	component18—

consistent	with	Oelec12,13,22-24—whose	intensity	increase	is	triggered	by	the	

formation	of	the	𝑝 4 × 4 -O	phase.	This	BE	is	in	good	agreement	with	that	
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computed	for	SO4,ad	on	the	unreconstructed	surface,	while	the	remaining	

7 × 3 𝑟𝑒𝑐𝑡-SO4	phase	appears	at	530.7	eV.	The	S:O	ratio	of	the	total	intensity	

of	the	530.2	eV	and	530.7	eV	components	remains	1:4	(see	Table	S2).	The	530.2	

eV	component	can	then	be	assigned	to	SO4,ad	on	the	unreconstructed	surface.		

	

	

Figure	3:	O	1s		and	S	2p	spectra—S	2p3/2	reference	BEs	(dashed	lines)30,31—of	the	reconstructed	
SO4	phase,	prepared	as	in	Figure	1,	after	oxidation	with	270	L	NO2	at	500	K.		Structures	of	the	
𝑝 4 × 4 -O	phase	(bottom	left)	and	SO4,ad	(bottom	right).	Coloring	matches	Figure	1.	
	

The	reason	for	the	incomplete	conversion	of	the	reconstructed	SO4	phase	

into	the	unreconstructed	one	is	clear	when	considering	the	preceding	

thermodynamic	analysis.	Formation	of	the	𝑝 4 × 4 -O	phase	through	Equation	1	

is	thermodynamically	favored	over	its	production	through	Equation	2.	However,	

there	are	also	kinetic	effects.	The	530	eV	oxygen	has	been	shown	to	decorate	the	

steps18,	so	that,	with	increasing	initial	coverage	of	the	530.7	eV	oxygen	the	

steps—which	act	as	sources	for	Ag	atoms—become	blocked.	As	Equation	1	is	

based	on	accessible	steps,	the	thermodynamically	less	favored	Equation	2	then	

becomes	dominant.	This	competition	for	Ag	adatoms	explains	why	under	UHV	

conditions	dense	adsorbate	phases	are	required	to	populate	a	significant	amount	

of	the	530.2	eV	oxygen	species,	because	dilute	phases	always	provide	access	to	
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Ag	adatoms	at	step	edges,	thereby	preventing	formation	of	the	metastable	phase.	

It	also	explains	why	the	530.2	eV	O	1s	species	does	not	appear	as	a	pure	phase	in	

oxidative	preparations.	

TPR	activity	

With	the	spectroscopic	properties	of	SO4,ad	determined	to	match	those	of	

Oelec,	we	turned	to	TPR	to	see	if	its	chemical	reactivity	also	does	so.	First	the	SO4	

reconstruction	was	prepared	on	a	Ag(111)	single	crystal	as	above,	Figure	4	

spectrum	I.	This	surface	was	exposed	to	0.1	mbar	ethylene	for	10	minutes	at	298	

K	before	evacuating	to	UHV.	The	surface	was	then	heated	at	0.8	K/s.	Neither	CO2	

(m/z=44	amu)	or	the	m/z=29	amu	fragment	often	assigned	to	a	CHO	fragment	

from	EO10,11,34	was	observed	in	QMS.		This	inactivity	is	consistent	with	reports	

that,	alone,	the	oxygen	species	with	a	BE	of	ca.	530	eV	is	inactive	in	TPR	with	

ethylene9-12.	

	
Figure	4:	O	1s	(left)	and	TPR	(right)	spectra	of	the 7 × 3 𝑟𝑒𝑐𝑡	reconstruction	(I)	and	the	
surface	active	in	ethylene	epoxidation	(II).	CO2	(EO)	production	leads	to	m/z=44	amu	(m/z=29	
amu	and	m/z=43).		
	
	 In	a	second	experiment	we	prepared	SO4,ad	and	Onuc	by	NO2-dosing	on	the	

SO4-reconstructed	surface,	Figure	4	spectrum	II.		This	surface	was	exposed	to	the	
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aforementioned	ethylene	treatment.	Now	both	m/z=29	amu	and	44	amu	are	

seen	during	TPR.	The	ca.	360	K	desorption	temperature	for	the		m/z=29	

fragment—ca.	1	eV	apparent	activation	energy	for	desorption	from	a	first	order	

Redhead	analysis11—is	consistent	with	previous	measurements	of	an	Ag(111)	

surface	active	in	EO	production	during	TPR11.	It	should	be	noted	however,	that	

m/z=29	is	not	unique	to	EO	due	to	cross-sensitivities	with	13CO,	H213C=12CH2,	

and	AcH34.	We	were	able	to	eliminate	the	former	two	possibilities	by	confirming	

C2H3O	(m/z=43)	desorbs	at	the	same	temperature	(Figure	4)	and	can	rule	out	

AcH	because	it	is	converted	entirely	to	CO2	in	the	presence	of	the	𝑝 4 × 4 -O	

phase12.	Thus,	we	assign	the	desorption	signal	at	ca.	360	K	to	an	EO	fragment,	

demonstrating	that	oxidizing	the	 7 × 3 𝑟𝑒𝑐𝑡-reconstructed	surface	produces	

the	EO-selective	species	active	in	TPR.		

	 Earlier	isotope	labeling	studies	showed	only	O	with	an	O	1s	BE	of	ca.	530	

eV	is	active	in	EO	production13,	which,	in	the	new	model,	implies	SO4,ad	is	the	EO-

selective	species.	To	understand	why,	we	computed	the	minimum	energy	paths	

(MEPs)	for	epoxidation	on	the	reconstructed	and	unreconstructed	SO4	phases.		

	 The	calculations	reveal	ethylene	adsorbs	on	surfaces	with	both	the 7 ×

 3 𝑟𝑒𝑐𝑡-SO4	reconstruction	and	1/16	ML	SO4,ad	with	Ead=0.61	eV	and	0.21	eV,	

respectively.	However,	EO	formation	on	the	reconstruction	is	highly	activated,	

1.8	eV	relative	to	adsorbed	C2H4;	whereas	the	activation	energy	(Ea)	to	EO	

formation	from	O	in	SO4,ad	is	only	0.96	eV	relative	to	adsorbed	ethylene.	

	 In	the	case	of	SO4,ad,	ethylene	reacts	to	form	the	intermediate	in	state	3	of	

Figure	5	in	a	near	thermoneutral	process	(see	Table	S4;	Tables	S5-S7	for	results	

with	dispersion	corrections).	This	intermediate	can	decompose	into	EO	and	

AcH—	the	first	step	towards	total	oxidation14-16—through	different	mechanisms.		
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AcH	formation	follows	a	zwitterionic	pathway,	state	4	of	Figure	5,	with	an	Ea	of	

1.35	eV.	Unlike	this	ionic	transition	state,	which	is	insensitive	to	spin-

polarization,	EO	production	is	accomplished	via	a	path	with	di-radical	

character35—see	state	6	of	Figure	5.	In	this	case,	the	non-spin-polarized	solution	

has	a	barrier	similar	to	that	found	for	AcH	production,	1.22	eV.	However,	the	

adsorbed	C2H4-O-SO3		moiety	allows	spin-density	to	develop	on	the	C	and	O	

atoms	involved	in	ring	closure,	state	6	of	Figure	5,	which	lowers	the	activation	

energy	to	0.81	eV.	This	large	difference	in	Ea	between	the	EO	and	AcH	paths	

suggests	the	ability	to	localize	spin-density	makes	SO4,ad	selective	to	the	epoxide.		

	 The	SO3,ad	formed	by	oxygen	transfer	to	ethylene	in	this	process	can	be	

removed	from	the	surface	by	disproportionation	into	SO4,ad	and	SO2,	with	an	

estimated	Ea	of	1.3	eV30,	or	through	reaction	with	ethylene.	In	the	latter	case,	EO	

and	AcH	are	predicted	to	be	formed	with	computed	activation	energies	of	1.2	eV,	

suggesting	oxygen	transfer	from	SO3,ad	is	slow	and	not	selective	to	EO,	see	Figure	

S6	and	Table	S8.		
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Figure	5:	MEPs	for	the	reaction	of	ethylene	with	SO4	on	the	unreconstructed	surface	with	a	spin	

density	isosurface	included	for	state	6.	Only	the	forward	Ea’s	are	labeled	at	the	transition	states—

states	2,	4,	and	6.	See	Table	S4	for	all	energies.	Paths	to	the	adsorbed	intermediate	in	state	3	are	

black,	to	EO	blue,	and	to	AcH	red.		

	

In	situ	titration	

	 To	further	test	this	mechanism	we	turned	to	in	situ	XPS,	where	we	

measured	the	S	2p	spectra	and	product	composition	when	a	silver	catalyst	

partially	covered	in	SO4,ad	is	exposed	to	ethylene	at	reaction	temperature.	The	

powder	catalyst	was	first	placed	under	epoxidation	conditions—1:2	mixture	of	

C2H4:O2	at	0.3	mbar	and	503	K—for	ca.	100	mins.	GC	and	PTRMS	confirmed	EO	

production.	The	gas-feed	was	then	switched	to	ethylene	while	maintaining	a	

total	pressure	of	0.3	mbar	and	temperature	of	503	K.	A	series	of	S	2p	spectra	

were	measured	during	this	ethylene	titration,	along	with	the	PTRMS	mass	45	
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signal—which	can	capture	rapid	changes	in	EO	production.	(To	verify	the	PTRMS	

signal	was	due	to	EO	we	simultaneously	measured	the	gas-phase	products	with	

GC	and	saw	no	AcH	production,	see	Table	1	for	a	list	of	analytical	techniques	

used	to	detect	EO.)	The	switch	to	a	reducing	atmosphere	led	to	the	growth	of	the	

predicted	SO3,ad	intermediate,	as	indicated	by	the	peak	at	165.4	eV	in	Figure	6;	

the	computed	binding	energy	is	165.0	eV.	PTRMS	shows	the	catalyst	was	still	

producing	EO	at	this	stage.	As	the	time	under	0.3	mbar	ethylene	increased	all	SOx	

species	were	titrated	from	the	surface	and	EO	production	ceased.	Based	on	the	

computed	MEPs,	Figure	S6,	we	presume	the	SO3,ad	formed	during	titration	

further	reacts	with	ethylene	to	yield	a	(partial)	oxidation	product	and	SO2.	The	

latter	will	rapidly	desorb	at	this	temperature36.	

	

Figure	6:	S	2p	spectrum	(hν=750	eV)	at	the	start	of	titration	with	0.3	mbar	ethylene	at	503	K	

(inset).	EO	(mass	45)	and	ethylene	(mass	29)	pressure	during	ethylene	titration	as	measured	by	

PTRMS.	The	increase	in	ethylene	pressure	during	the	start	of	the	titration	causes	a	concomitant	

increase	in	EO	pressure.	The	S	2p	intensity	measured	at	different	is	plotted	for	comparison.	
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	 While	ethylene	titration	indicates	adsorbed	SO4	remains	active	as	a	

stoichiometric	oxidant	at	epoxidation	temperatures,	earlier	isotope	labeling10	

and	in	situ	XPS	studies22,23	showed	the	EO-selective	species	seen	in	TPR	is	also	

catalytically	active.	Hence,	SO4,ad	should	be	reformed	under	epoxidation	

conditions	by	re-oxidation	of	SO3,ad.	The	low	Ea	associated	with	SO3,ad	oxidation	

through	the	reaction	with	atomic	oxygen,	Figure	S7-S8,	and	O2,ad,	Figure	S9,	show	

this	is	plausible.	Oxidation	through	reaction	with	O2,ad,	for	instance,	is	activated	

by	0.66	eV,	significantly	less	than	the	>	1	eV	associated	with	the	competing	SO3,ad	

reduction	by	ethylene,	Figure	S6.	The	calculations	predict	a	non-vanishing	

steady-state	coverage	of	SO4,ad	can	be	maintained	under	epoxidation	conditions.	

In	situ	regeneration	

	 To	see	if	SO4,ad	is	(re)generated	on	a	clean	silver	surface	during	

epoxidation	we	returned	to	in	situ	XPS	to	first	check	if	it	is	formed	during	

epoxidation	on	a	S-free	catalyst	surface.	As	in	the	case	of	the	titration	

experiment,	EO	production	was	monitored	by	PTRMS	to	capture	rapid	changes	

in	the	product	pressure	while	the	S	2p	spectrum	was	measured.		To	begin,	a	

fresh	Ag	powder	catalyst	was	cleaned	by	treatment	in	0.3	mbar	H2	at	873	K	for	1	

hour	before	cooling	to	room	temperature.	After	cooling	the	H2	gas	was	replaced	

with	a	1:1	mixture	of	C2H4:O2	while	maintaining	a	total	pressure	of	0.3	mbar	and	

a	temperature	of	273	K.	The	S	2p	spectrum	measured	under	these	conditions	

revealed	the	near	surface	region	was	free	from	S	contamination	and	no	EO	was	

observed	in	PTRMS,	Figure	7A.		

	 EO	production	began	upon	heating	the	clean	Ag	powder	to	523	K	under	

the	reaction	gas	mixture,	and	the	S	2p	spectrum	revealed	the	concurrent	

appearance	of	SO4,	Figure	7A.	Continued	epoxidation	led	to	minor	changes	in	the	
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amount	of	S	observed	by	XPS,	and	the	S	2p	spectrum	showed	SO4	was	the	only	S	

species	present	under	steady-state	epoxidation,	in	agreement	with	the	low	

barriers	computed	for	oxidation	of	SO3,ad.	Thus,	adsorbed	SO4	is	rapidly	

generated	under	epoxidation	conditions	and	its	coverage	saturates,	perhaps	due	

to	S	dissolution	and/or	coverage	effects	(see	Figure	S4),	confirming	the	TPR	

active	species	is	formed	and	maintained	under	catalytic	conditions.		

	

Figure	7:	PTRMS	(mass	45)	showing	the	EO	production	from	a	Ag	powder	catalyst	under	various	

conditions	(total	pressure	0.3	mbar)	with	corresponding	S	2p	spectra	inset.	A)	The	catalyst	was	

exposed	to	the	reaction	gas	mixture	at	298	K	and	then	heated	to	523	K	to	initiate	the	reaction.	

After	210	mins	on	stream	the	adsorbed	SO4	formed	during	epoxidation	was	cleaned	by	ethylene	

titration	before	returning	to	the	reaction	gas	mixture.	S	2p	spectra	measured	with	hν=355	eV.		B)	

A	Ag	powder	catalyst	was	held	under	ethylene	at	503	K	before	introducing	O2	to	initiate	the	

reaction.	After	90	mins	on	stream	more	S	was	segregated	to	the	surface	under	pure	O2	before	

returning	to	the	reaction	gas	mixture.	S	2p	spectra	measured	with	hν=390	eV.	
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	 After	operating	the	Ag	powder	catalyst	for	almost	200	mins	we	removed	

SO4	from	the	surface,	confirmed	with	XPS,	by	ca.	30	mins	of	ethylene	titration	at	

723	K.	The	catalyst	was	then	cooled	to	523	K	and	oxygen	was	reintroduced	to	

maintain	a	total	pressure	of	0.3	mbar	in	a	1:1	mixture	of	C2H4:O2.	As	before,	

PTRMS	revealed	the	production	of	EO,	and	XPS	showed	the	simultaneous	

appearance	of	SO4,	Figure	7A.	However,	after	regenerating	the	S	phase	there	was	

less	SO4	than	before	the	ethylene	titration	and	a	two-fold	decrease	in	the	gas-

phase	EO	signal	measured	by	PTRMS.	This	observation	suggests	catalytic	EO	

production	is	linked	to	the	coverage	of	the	EO-selective	species	found	in	TPR.		

	 To	further	test	this	link	between	EO	production	and	adsorbed	SO4	we	

cleaned	a	fresh	Ag	powder	catalyst.	In	this	case	the	clean	catalyst	was	placed	

under	0.3	mbar	C2H4	at	503	K.	No	EO	production	was	observed	in	PTRMS	and	the	

S	2p	spectrum	showed	no	evidence	for	S	accumulation,	Figure	7B.	After	ca.	40	

mins	under	ethylene	the	gas	composition	was	switched	to	a	2:1	mixture	of	

O2:C2H4	while	maintaining	the	total	pressure	at	0.3	mbar	and	temperature	at	503	

K.	The	addition	of	O2	at	reaction	temperature	led	to	the	immediate	appearance	of	

adsorbed	SO4	and	concomitant	EO	production,	Figure	7B.	

	 After	ca.	50	mins	of	epoxidation	ethylene	was	removed	from	the	gas-

phase	while	maintaining	a	total	pressure	of	0.3	mbar.	The	temperature	was	also	

increased	to	673	K,	which	is	above	the	desorption	temperature	of	Onuc	but	below	

that	of	the	S	phase18,19.	As	expected,	PTRMS	showed	no	EO	production	during	

this	oxygen	annealing,	and	the	S	2p	spectrum	showed	annealing	led	to	an	

increase	in	the	amount	of	adsorbed	SO4,	see	Figure	7B,	which	may	be	due	to	the	

re-segregation	of	gas-phase	S	impurities	dissolved	during	epoxidation.		
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	 Returning	to	epoxidation	conditions—2:1	mixture	of	O2:C2H4	at	0.3	mbar	

and	503	K—after	90	mins	of	annealing	in	O2	led	to	the	immediate	appearance	of	

EO	in	PTRMS,	Figure	7B.	In	this	case,	the	EO	production	was	higher	than	before	

O2	annealing,	and	the	increased	coverage	of	the	S	phase	induced	by	annealing	

was	also	maintained.	Thus,	adsorbed	SO4	not	only	(re)forms	on	silver	surfaces	

during	epoxidation,	but	by	increasing	(decreasing)	its	coverage	we	see	an	

increase	(decrease)	in	EO	production.		Hence,	it	appears	the	steady-state	EO	

production	of	an	active	catalyst	may	be	correlated	with	the	amount	of	adsorbed	

SO4—as	expected	if	SO4,ad	remains	active	during	catalytic	epoxidation.	

Quantitative	conversion	

	 We	performed	further	in	situ	XPS	experiments	on	Ag	powder	to	verify	the	

relationship	between	EO	production	and	the	coverage	of	adsorbed	SO4.	For	this	

purpose	we	employed	using	a	calibrated	micro-GC	to	quantify	the	gas-phase	EO	

and	CO2	concentrations	while	the	cleaned	catalyst	was	exposed	to	a	2:1	mixture	

of	O2:C2H4	at	0.3	mbar	and	503	K.	The	S	2p	and	Ag	3d	spectra	were	then	

measured	using	electrons	of	the	same	kinetic	energy	(220	eV)	to	allow	the	

SO4/Ag	ratio	to	be	computed.	As	in	the	previous	examples,	SO4	appears	once	the	

reaction	gas	mixture	is	introduced	at	503	K,	after	which	the	amount	of		SO4	

slowly	increases	with	time	on	stream.	Plotting	the	EO	concentration	against	the	

measured	SO4/Ag	ratio,	Figure	8,	shows	a	concomitant	increase	in	EO	

production,	like	that	shown	in	Figures	7	and	S11,	and	drop	in	CO2	concentration.	

Now	a	near	linear	correlation	is	seen	between	the	EO	concentration	and	SO4	

coverage	for	a	“clean”	catalyst	operated	in	catalytic	epoxidation.		
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Figure	8:	EO	and	CO2	production,	quantified	with	a	calibrated	micro-GC,	plotted	as	a	function	of	

the	SO4/Ag	ratio	measured	by	in	situ	XPS.	Tabulated	atomic	cross	sections	for	photoionization	

and	the	related	asymmetry	parameters	were	used	to	normalize	the	areas	obtained	from	XPS37,38.		

To	estimate	the	SO4	coverage	an	IMFP	of	5.6	Å	was	used	for	photoelectrons	with	KE	of	220	eV39	

assuming	the	Ag	atomic	layers	are	separated	by	2.36	Å24.	

Conclusions	 	

	 In	summary,	we	have	shown	the	methods	used	to	prepare	the	EO-

selective	oxygen	species	active	on	silver	catalysts	in	TPR9-13—often	referred	to	as	

electrophilic	oxygen—lead	to	the	accumulation	of	surface	SO4,	due	to	sulfur	

impurities	in	ethylene	and/or	silver.	On	a	surface	free	of	coadsorbed	oxygen	this	

SO4	forms	an	unreactive	surface	reconstruction.	When	coadsorbed	oxygen	is	

present,	oxygen	induced	surface	reconstructions	are	produced,	leading	to	a	local	

competition	for	silver	adatoms	that	partially	lifts	the	Ag/SO4	reconstruction.	The	

resulting	SO4	adsorbed	on	the	unreconstructed	silver	surface	has	the	

spectroscopic	properties	associated	with	Oelec	and	produces	EO	during	TPR.		DFT	

calculations	suggest	SO4,ad	should	be	selective	in	EO	production	and	that	the	

resultant	SO3,ad	can	be	reoxidized	to	SO4,ad	by	reaction	with	O2	or	Oads.	In	situ	XPS	

confirms	that	during	catalytic	epoxidation	SO4,ad	appears	on	a	clean	silver	surface	

under	the	reaction	gas	mixture	with	a	coverage	that	is	linearly	correlated	with	
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EO	production.	We	conclude	the	electrophilic	oxygen	species	appearing	at	530.2	

eV	in	the	O	1s	spectrum	is	the	oxygen	in	SO4,ad	formed	as	a	result	of	trace	sulfur	

impurities.		

	

Methods	

	 Quantum	ESPRESSO40	was	used	for	DFT	calculations	at	the	PBE	level	with	

ultrasoft	pseudopotentials	from	the	PS	library	with	kinetic	energy	(charge	

density)	cutoff	of	30	Ry	(300	Ry)	with	a	10-7		convergence	threshold	for	self	

consistency.	Adsorption	energies	and	ΔSCF	core-level	shifts	were	computed	with	

5-layer	Ag	slabs	separated	by	ca.	15	Å	vacuum	and	a	k-point	mesh	equivalent	to	

12×12 	for	the	 1×1 	surface	unit	cell	using	Marzari-Vanderbilt	cold	

smearing41	with	a	smearing	parameter	of	0.02	Ry.	During	ionic	relaxations	the	

bottom	2	layers	of	the	slab	were	held	fixed	and	a	convergence	threshold	of	10-4	

Ry	(10-3	Ry/Bohr)	was	used	for	the	total	energy	(forces).	MEPs	were	computed	

with	the	climbing	image	nudged	elastic	band	method.	Transition	states	were	

verified	by	normal	mode	analysis.	Zero-point	energy	corrections	were	not	

included	as	they	changed	the	results	by	ca.	0.1	eV	at	most,	see	Table	S4.	

Dispersion	corrections	did	not	qualitatively	alter	the	results,	see	Tables	S5-S7.	

	 For	the	experimental	portions	of	the	study	all	samples	and	analytical	

techniques	to	detect	EO	were	chosen	based	on	the	limits	of	the	analytical	

methods	and	nature	of	the	experiments.	These	techniques	are	summarized	in	

Table	1.	
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Table	1:	Methods	used	to	detect	EO	production	for	different	samples	and	experiments.	

Sample	 Method	to	detect	EO	 Corresponding	figure	

Ag(111)	 QMS	 4	

Ag	powder	 PTRMS	 6,	7	

Ag	powder	 GC	 8	

	

	 TPR	and	XPS	were	performed	in	a	combined	UHV/ambient	pressure	

system	previously	described	in	detail42.	The	Ag(111)	crystal	was	cleaned	by	

cycles	of	Ar+	sputtering/heating	to	775	K.	NO2	was	used	for	oxidation	to	avoid	

high	O2	doses43,	a	detailed	description	of	the	preparation	has	been	described	

previously18,19.		The	included	XP	spectra	were	measured	with	a	monochromatic	

Al	Kα	source	(Omicron	XM	1000)	and	hemispherical	analyzer	(SPECS	Phoibos	

100).	Spectra	were	calibrated	using	the	Ag	3d5/2	peak—BE	of	368.25	eV.	TPR	

products	were	measured	with	a	quadrupole	mass	spectrometer	(Pfeiffer	Prisma	

QMS	200	M2).	LEED	I/V	curves	were	measured	at	the	nanospectroscopy	

beamline	at	the	synchrotron	facility	Elettra44.	

	 In	situ	XPS	measurements	were	performed	at	the	near	ambient	pressure	

XPS	endstation	of	the	ISISS	beamline45	at	the	synchrotron	facility	BESSY	II/HZB,	

Berlin,	Germany.	Pressed	pellets	of	Sigma–Aldrich	Ag	powder	with	a	<	100	nm	

grain	size	were	used	along	with	ultrahigh	purity	gases,	ethylene	3.6	and	oxygen	

6.0,	obtained	from	Westfalen.	For	each	in	situ	XPS	experiment	a	catalyst	was	

mounted	on	a	sapphire	sample	holder	and	held	in	place	between	two	stainless	

steel	plates	where	the	lid	had	a	hole	for	measuring	spectra,	see	Ref	16	for	more	

details	of	the	approach.	Unless	otherwise	noted,	catalyst	were	cleaned	with	

oxidation/reduction	cycles	under	0.3	mbar	O2/H2	at	873	K.	Sample	temperature	
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was	measured	using	a	K-type	thermocouple	squeezed	between	the	sample	and	

the	lid	while	the	catalyst	was	heated	from	the	backside	with	an	IR	laser.	

Temperature	was	controlled	using	a	PID	feedback	loop.	Gas-phase	product	

quantification	was	performed	with	a	calibrated	Varian	Micro-GC	CP4900.	The	

gas-phase	composition	was	also	continuously	measured	using	a	Prisma	

quadrupole	mass	spectrometer	(QMS)	from	Balzers	and	a	Proton	Transfer	

Reaction	MS	(PTRMS)	from	IONICON	Analytik.	The	latter	allows	EO	to	be	

monitored	using	m/z=45	(C2H4O	and	H+),	as	CO2	does	not	contribute	to	the	

PTRMS	signal	due	to	its	low	proton	affinity22	and	AcH	was	not	observed	with	the	

GC	in	any	of	the	in	situ	experiments.		
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