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The concept of the potential-energy surface (PES) and directional reaction coordinates is the backbone of our
description of chemical reaction mechanisms. Although the eigenenergies of the nuclear Hamiltonian uniquely
link a PES to its spectrum, this information is in general experimentally inaccessible in large polyatomic systems.
This is due to (near) degenerate rovibrational levels across the parameter space of all degrees of freedom, which
effectively forms a pseudospectrum given by the centers of gravity of groups of close-lying vibrational levels. We
show here that resonant inelastic x-ray scattering (RIXS) constitutes an ideal probe for revealing one-dimensional
cuts through the ground-state PES of molecular systems, even far away from the equilibrium geometry, where
the independent-mode picture is broken. We strictly link the center of gravity of close-lying vibrational peaks
in RIXS to a pseudospectrum which is shown to coincide with the eigenvalues of an effective one-dimensional
Hamiltonian along the propagation coordinate of the core-excited wave packet. This concept, combined with
directional and site selectivity of the core-excited states, allows us to experimentally extract cuts through the
ground-state PES along three complementary directions for the showcase H2O molecule.

DOI: 10.1103/PhysRevA.97.053410

I. INTRODUCTION

Multidimensional potential-energy surfaces (PES),
dynamic pathways, and reaction coordinates are powerful
conceptual tools for molecular science and chemistry. Exper-
imental reconstruction of multidimensional PES—spanning
from equilibrium to strong geometric distortion—of coupled
degrees of freedom poses a challenge. Ideally, knowledge and
interpretation of the full experimental vibrational spectrum
are needed to solve this inverse problem [1–5]. It is almost
impossible to extract such information from experimental
spectra of large polyatomic systems. However, knowledge of
the full multidimensional PES is redundant in many situations.
Indeed, the majority of practical applications requires knowl-
edge of the PES along directional reaction pathways, such as
in imaging of folding energy landscapes by single-molecule
force spectroscopy [6,7] instead of the full PES landscape
along all degrees of freedom of the investigated system.
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We present subnatural linewidth resonant inelastic x-ray
scattering [8–11] (RIXS) as an experimental approach that
delivers this directional reconstruction method of the ground-
state potential-energy surface. The strong site and state sensi-
tivity of RIXS uniquely enables probing the electronic ground-
state PES in different directions using resonant x-ray scattering
through selected intermediate core-excited electronic states.
The role of these intermediate states is crucial for the potential
reconstruction, because it defines the selective propagation of
the nuclear wave packet in state- and site-specific directions.
Indeed, the core-excited-state wave packets propagate along
the coordinates defined by the orientation of valleys of the
selected core-excited-state PES. The projections of these di-
rectional wave packets onto vibrational states of the electronic
final state, in the emission step of the RIXS process, give access
to the final-state PES along the selected pathway in a wide
range of geometry distortions (Fig. 1).

Quite often, vibrational states are clustered into groups
of close-lying vibrational levels (typically unresolved in
current RIXS spectra) [12–15]. In principle, the fine structure
of each group can be resolved using RIXS of super-high
resolution. However, we face here a nonintuitive situation
where the knowledge of such a fine structure of overlapping
vibrational states is redundant and even constitutes an obstacle
in our reconstruction technique. Instead, we need only much
simpler information, namely, the centers of gravity of each
group, which form a pseudospectrum that is unique for each
propagation direction of the wave packet on the core-excited
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FIG. 1. Localized nuclear wave packets and 1D projections. Squared core-excited-state nuclear wave packets |�|2 of gas-phase water versus
(a) OH bond lengths R1 and R2 and (b) bending normal coordinate Qb. � exhibits a strong localization along the bonds and between the bonds
for the |O1s−14a1

1〉 and |O1s−12b1
2〉 core-excited states, respectively, and is altered exclusively along Qb for the |O1s−12b1

1〉 excited state. The
core-excited-state potential-energy surfaces VCE drive directional wave-packet transformations. The projection 〈ψn1n2 |�〉 of the core-excited
wave packet onto the ground state allows to reconstruct 1D cuts of the ground-state potential VGS along distinct directions.

PES. We have found that this pseudospectrum allows us to
extract one-dimensional cuts of the electronic ground-state
potential along the propagation direction of the nuclear wave
packet in the selected core-excited state.

II. RESONANT INELASTIC X-RAY SCATTERING
OF WATER MOLECULES

To exemplify the PES reconstruction, we study the
electronically elastic RIXS process in water molecules,
which ends up in the electronic ground state. The O 1s x-ray
absorption spectrum of gas-phase water exhibits three well-
separated absorption resonances [11,16] which correspond to
excitations of the O 1s electron into the unoccupied molecular
levels 4a1, 2b2, and 2b1. The theoretical simulations of the
core-excited-state wave-packet propagation in Fig. 1 show that
the nuclear wave packet moves along different state-specific
reaction coordinates on the different core-excited states within
the lifetime of the O 1s core hole. The wave packets, confined
within the PES valleys, are localized along the OH bonds of
the dissociative |O1s−14a1

1〉 state, between the OH bonds for
the |O1s−12b1

2〉 potential, and exclusively along the bending
coordinate for the |O1s−12b1

1〉 state [11]. Upon decay, these
directional wave packets are projected onto the vibrational
levels of the ground state, thus enabling reconstruction of
different cuts through the PES (Fig. 1).

Here, we consider the RIXS spectra of H2O for photon
energies tuned in resonance with the |O1s−14a1

1〉, |O1s−12b1
2〉,

and |O1s−12b1
1〉 transitions. The wave packets � presented in

Fig. 1 were used in Refs. [11] and [17] to compute the RIXS
spectra at each absorption resonance and lead to good agree-
ment with experiment. The exclusive presence of stretching ex-
citations in the |O1s−14a1

1〉 spectrum, dominance of stretching
excitations with presence of a single bending overtone in the
|O1s−12b1

2〉 spectrum, and the exclusive existence of bending
excitations in the |O1s−12b1

1〉 spectrum reflect the coupling of
the characteristic confinement of the core-excited-state wave
packets to the experimentally detected ground-state vibrational
modes [17,18].

III. EXPERIMENT

The RIXS end station of the ADRESS beam line [19] at the
Swiss Light Source was utilized to acquire the experimental
spectra with a resolution of 75 meV. The H2O (g) sample,
generated by evacuation from a ∼10 ml liquid sample reservoir
at a temperature of 60 ◦C, was transferred through previously
evacuated and heated steel capillaries to the interaction region
under permanent evacuation. In this way a constant flow and
thus continuous sample replacement was achieved. At the point
of interaction with the synchrotron x-ray beam, the sample was
separated from the UHV experimental chamber by a 150-nm
thin silicon nitride membrane. The surface of the membrane
was positioned under an angle of 45◦ with respect to the incom-
ing x-ray beam, allowing for a transmission of both the incident
as well as the emitted photons in a 90◦ scattering geometry.
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The energy calibration of the ADRESS beam line was
determined according to the absorption maximum at the π*
resonance of O2 gas at 530.519 eV to be in agreement with the
data presented by Saitoh et al. [20], who reported 530.521 ±
0.01 eV. Disagreements about this absolute energy exist in liter-
ature as pointed out by Prince et al. [21]. The nominal energies
according to the beamline calibration for the spectra recorded
at the different resonances are 533.509 eV for |O1s−14a1

1〉,
535.289 eV for |O1s−12b1

2〉, and 536.699 eV for |O1s−12b1
1〉.

From the comparison between the incident-energy-dependent
experimental spectra and simulated spectra considering the
detuning dependent core-excited-state dynamics we estimate
the detuning from the different resonances to be 0.05 eV
for |O1s−14a1

1〉, −0.025 eV for |O1s−12b1
2〉, and 0.2 eV for

|O1s−12b1
1〉 [17].

IV. ELECTRONIC STRUCTURE METHODS
AND RIXS THEORY

To compute the potential-energy surfaces of the ground
and core-excited states we employed the MOLCAS 8.0 package
[22] using the scalar relativistic restricted-active-space self-
consistent field (RASSCF) method [23] followed by second-
order perturbation theory (RASPT2) method [24]. The atomic
orbitals were described by an ANO-RCC [25] basis set
in combination with a (2s2p1d) Rydberg basis similarly to
Ref. [26]. The normal vibrational modes of the ground state
were obtained at the CASPT2(8,9) level. An active space with
10 electrons consisting of 11 orbitals in RAS2 and RAS3
was used in the RASPT2 calculations (in Cs symmetry) of
the potential-energy surfaces. To reach both ground and core-
excited states, separate RASSCF calculations were performed
with double or single occupation of O 1s (which is frozen from
the Hartree-Fock calculation) in the RAS3 subspace. RASSCF
state-averaging and multistate RASPT2 were carried out for
|O1s−14a1

1〉 and |O1s−12b1
2〉.

We compute the RIXS cross section assuming that the
stretching and bending are uncoupled (so-called 2D+1D
model [11,17] using a time-dependent representation

σf c(ω′,ω) =
∑

m,m′
c,mc

〈0|m′
c〉〈m′

c|m〉〈m|mc〉〈mc|0〉

× Re
∫ ∞

0
dtei(ω−ω′−εm+ε(0))t cm′

cmc
(t) (1)

as the function of the energy loss ω − ω′. Here ω′ is the
frequency of the scattered photon, ε(0) and εm are the total
zero-point energy and the bending vibrational energy of the
ground state. To find the autocorrelation function,

cm′
cmc

(t) = 〈
�m′

c
(0)

∣∣e−ih2t
∣∣�mc

〉
,

�mc
=

∫ ∞

0
dt1e

−	t1ei(
−εmc +�)t1ψ(t1), (2)

where 
 = ω − ωc0 + ε(0) is the detuning of the incoming
photon frequency from the frequency ωc0 of the vertical
transition 0 → c. Here � = Ec(R0) − Ec(R(c)

0 ), R0 and R(c)
0

are the coordinates of the potential minima of the ground and
core-excited three-dimensional (3D) potentials.

FIG. 2. From eigenstates of a multidimensional Hamiltonian to
a one-dimensional pseudospectrum.(a) White curves show the cross-
ings of the stretching isoenergetic surfaces εn1n2 with the ground-state
PES V (R1,R2) = εn1n2 . Circles along the coordinates R1 (green)
and Qs (blue) are the centers of gravity εcg

n of the nth group of
the |O1s−14a1

1〉 and |O1s−12b1
2〉. The curves show the theoretical

RIXS profile computed at the (a) |O1s−14a1
1〉 and (b) |O1s−12b1

2〉
resonances. The bars above show the pseudospectra εn = εcg

n which
can be extracted along different coordinates from the |O1s−14a1

1〉 (b)
and |O1s−12b1

2〉 (c) RIXS due to different Franck-Condon factors
(shown by black vertical lines). They allow for the reconstruction
of the potential along the OH bonds R1 and along the symmetric
stretching direction Qs .

V. 1D CUT OF THE PES AND THE PSEUDOSPECTRUM

Let us illustrate, based on the detected RIXS transitions,
how the confined core-excited-state wave packets can be
used to reconstruct one-dimensional (1D) cuts through the
ground-state PES. To give insight into the physics, it is
enough to consider only the coupled stretching dynamics. The
two-dimensional (2D) Hamiltonian of the coupled stretching
motion of the ground electronic state in its general form

h2 = − 1

2μ1

∂2

∂Q2
1

− 1

2μ2

∂2

∂Q2
2

− ζ
∂2

∂Q1Q2
+ V (Q1,Q2).

(3)

Here μi are the reduced masses for motion along the general
coordinate Qi . The kinetic energy operator is not diagonal
due to the mass polarization term ∝ ζ . It is known that the
eigenvalues εn1n2 of the ground-state 2D Hamiltonian h2 form
groups [15,17,18] according to the group number

n = n1 + n2, n = 0,1,2, . . . . (4)

Each nth group consist of n + 1 close-lying vibrational sub-
levels as illustrated in Fig. 2. Such clustering of the vibrational
states into groups occurs in many molecules containing H-X
bonds (e.g., H2X, H3X, H4X) [11,15]. In our measurements
the fine structure of each nth group is not resolved and each
nth peak is instead characterized by its center of gravity,

εcg
n =

∑
n1+n2=n

P (n)
n1n2

εn1n2 ,

P (n)
n1n2

= |〈�|ψn1n2〉|2∑
n1+n2=n

|〈�|ψn1n2〉|2
, (5)
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which is sensitive to the direction of localization of the nuclear
wave packet � in the core-excited state, as seen in Fig. 2.
Indeed, the probability P (n)

n1n2
is defined by the square of the

scattering amplitude [8,17,18],

Fn1n2 = −i〈ψn1n2 |�〉,

� =
∫ ∞

0
ei(ω−ωc0+ε00+i	)tψ(t)dt, ψ(t) = e−ih(c)tψ00,

(6)

which is the projection of � onto the vibrational eigenfunctions
ψn1n2 of the ground state. Here, ωc0 is the energy of the
vertical transition 0 → c, h(c) and 	 = 0.08 eV are the 2D
Hamiltonian and the lifetime broadening of the core-excited
state, respectively.

Figure 1(a) depicts the localization of the nuclear wave
packet � in each core-excited state along the reaction path
Q1 which is directed into a valley of the corresponding PES.
For the |O1s−14a1

1〉 dissociative state, the coordinate Q1 is
oriented along one OH bond (Q1 = R1 or R2) and for the
bound |O1s−12b1

2〉 state, it is located between the OH bonds
(i.e., along the symmetric stretching coordinate Q1 = Qs). The
wave packet � evolving along Q1 is narrow in the direction
Q2 orthogonal to Q1. We describe the strong confinement of �

in the Q2 direction by the sharp function �(Q2) (normalized
to one) using the following factorization:

�(Q1,Q2) = φ(Q1)�(Q2 − Q2e), (7)

where �(Q2 − Q2e) has its maximum at Q2 = Q2e.
To connect the projection of this narrow wave packet (7)

onto the ground-state PES with the potential V (Q1,Q2e) along
the confinement coordinate Q1 we study the relation between
the center of gravity ε

cg
n (5) and the nth group to the eigenvalue

εn of the 1D Hamiltonian h1 along Q1:

h1ψn(Q1) = εnψn(Q1),

h1 ≡ 〈�|h2|�〉 = − 1

2μ1

∂2

∂Q2
1

+ V (Q1,Q2e) + C.

(8)

The following approximation V (Q1,Q2) ≈ V (Q1,Q2e) +
κ(Q2 − Q2e)2/2 is valid because (Q2 − Q2e) is small. The
constant offset C = 〈�|κ(Q2 − Q2e)2/2 + T (Q2)|�〉 of the
1D Hamiltonian h1 is not important because we define the
potential with respect to the bottom of the well. Clearly, the
spectrum of the 1D Hamiltonian εn depends on the state-
sensitive propagation direction of the wave packet φ(Q1), in
full agreement with experiment and simulations. Let us write
the normalized wave packet φ(Q1) in terms of eigenfunctions
ψn(Q1):

|φ〉 = |ψn〉〈ψn|φ〉 +
∑

m( �=n)

|ψm〉〈ψm|φ〉,

〈�|ψn1n2〉 = 〈φ�|ψn1n2〉 = 〈φ|ψn〉〈ψn�|ψn1n2〉
+

∑
m( �=n)

〈φ|ψm〉〈ψm�|ψn1n2〉. (9)

One should notice that the overlap between |ψm�〉 and |ψn1n2〉
which belong to different groups is negligible due to the
small spacing δεn1n2 between the levels inside of the same
group (n1 + n2 = n) in comparison with the spacing εn − εm

between the levels from different groups (n �= m) [11,17] (see
Appendix):

〈ψm�|ψn1n2〉 ≈ 0, n1 + n2 = n �= m. (10)

This together with the identity 〈ψm|ψn〉 = 0 allows us to write
Eq. (5) as follows:

P (n)
n1n2

= |〈ψn�|ψn1n2〉|2∑
n1+n2=n

〈ψn�|ψn1n2〉〈ψn1n2 |ψn�〉

= |〈ψn�|ψn1n2〉|2. (11)

Thus Eqs. (5) and (11) bring about a central result of our article:

εcg
n =

∑
n1+n2=n

〈ψn�|ψn1n2〉εn1n2〈ψn1n2 |ψn�〉

= 〈ψn�|h2|ψn�〉 = 〈ψn|h1|ψn〉 = εn. (12)

It is striking that the center of gravity of the nth RIXS peak
is nothing else than the eigenvalue εn of a 1D Hamiltonian
h1 = 〈�|h2|�〉 along the Q1 coordinate. Hence, the set of
centers of gravity of the peaks constitutes a pseudospectrum
from which we can reconstruct a 1D potential along Q1 of
the multidimensional PES, either by employing an analytical
model or a model-free numerical procedure. The pseudospec-
tra, related to the selected cuts, are shown in Fig. 2 for the
theoretical RIXS spectra computed at the |O1s−14a1

1〉 and
|O1s−12b1

2〉 resonances. Figure 2 shows the sensitivity of the
pseudospectrum on the direction of the 1D cut.

VI. EXPERIMENTALLY RECONSTRUCTED POTENTIALS

Now, we are in position to validate our concept by extracting
the potential cuts from the experimental RIXS spectra of
H2O (Fig. 3). To reconstruct the 1D cuts we have fitted the
experimental pseudospectrum εν to the spectrum

εν = ωe

(
ν + 1

2

) − ωexe

(
ν + 1

2

)2
(13)

of the Morse potential [27]

VM (Q − Qe) = D(1 − e−α(Q−Qe))2 (14)

by varying the parameters ωe and ωexe. Here the dissociation
energy D = ω2

e/(4ωexe) and α = √
2μωexe relate to the fitted

parameters.
We start the PES reconstructions, from experimental RIXS

data, by studying the scattering through the dissociative
|O1s−14a1

1〉 core-excited state. The molecule undergoes an
ultrafast dissociation along the OH bonds (along R1 and R2,
see Fig. 1), which occurs during the O 1s core-hole lifetime of
1/2	 = 4.1 fs. This gives rise to a long stretching vibrational
progression, which allows to reconstruct the 1D potential in
the direction of the OH bond Q1 = R1 in wide range of
R1. The RIXS spectrum at the |O1s−14a1

1〉 resonance [see
Fig. 3(a)] exhibits exclusively stretching excitations. Natu-
rally, this progression is not contaminated by the vibrations
of the fragment of dissociation OH, as the signal of this
species forms the so-called atomic peak [8,28], which is well
separated from the main progression in RIXS. The fit of
the pseudospectrum εn = ε

cg
n from the vibrationally resolved

RIXS spectrum by the eigenstates of the Morse potential
VM (Q − Qe) with Re = 1.81 a.u. provides us the vibrational
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FIG. 3. Reconstruction of the 1D cut of the PES along the R1, Qs

(between the OH bonds) and Qb coordinate from the experimental
|O1s−14a1

1〉, |O1s−12b1
2〉, and |O1s−12b1

1〉 RIXS spectra due to strong
wave-packet confinement. (Left) The centers of gravity of each
vibrational peak form the pseudospectrum (colored horizontal lines)
of the ground-state 1D potential along the coordinates R1, Qs , and Qb

selected by the nuclear wave packets highly confined in the valleys
of the core-excited states. The fit of the pseudospectrum to the Morse
potential VM [27] defines its parameters ωe = (475.4 ± 1.1) meV
and ωexe = (9.99 ± 0.14) meV for |O1s−14a1

1〉 and ωe = (457.65 ±
0.70) meV and ωexe = (4.76 ± 0.13) meV for |O1s−12b1

2〉. The fit
of the bending potential eigenstates yields ωe = (201 ± 2) meV and
ωexe = (1.9 ± 0.4) meV for the model Vb. Used effective masses are
given in the text. (Right) The reconstructed potentials (colored) are
in good agreement with the ab initio potentials (black) in the energy
range of available vibrational states.

frequency ωe = (475.4 ± 1.1) meV and the anharmonicity
constant ωexe = (9.99 ± 0.14) meV. Together with the value
of the reduced mass μ1 = mHmO/(mH + mO) = 0.94 a.m.u.,
this yields the following parameters of the Morse potential:
α = 1.122 ± 0.008 a.u., D = 5.66 ± 0.09 eV. In spite of our
experimental data not providing εn in the vicinity of the
dissociation limit, the obtained dissociation energy is rather
close to the single O-H bond dissociation energy of ∼5.6 eV
in a gas-phase water molecule [29]. The reconstructed potential
is compared to the calculated 1D potential along the OH bond

in Fig. 3(a). Both potentials are almost identical in the range
where vibrational excitations are detected.

Let us tune the photon energy in resonance with the
|O1s−12b1

2〉 core-excited state, where the wave packet � is
confined within the narrow potential well (Fig. 1) between the
bonds. Contrary to the previous case, we are able now to get a
cut of the ground-state PES along symmetric bond elongations
Q1 = Qs (see Fig. 1). The stretching pseudospectrum εn =
ε

cg
n extracted from the |O1s−12b1

2〉 RIXS spectrum fitted by
the eigenstates of the Morse potential VM gives values of
the vibrational frequency ωe = (457.65 ± 0.70) meV and the
anharmonicity constant ωexe = (4.76 ± 0.13) meV. Taking
the reduced mass for the symmetric stretching bond elongation
μs = 1.044 a.m.u. into account we get α = 0.82 ± 0.02 a.u.,
D = 11.0 ± 0.3 eV as parameters of the Morse potential
VM . The deviation of the obtained value of D from the
thermochemical dissociation energy of 9.5 eV [31] is caused
by the fact that the vibrational progression is not long enough
for the studied state to accurately predict the dissociation limit.
Comparing the reconstructed potential to the ab initio cut along
Qs in Fig. 3(b), it becomes obvious that there is a nearly perfect
overlap between experiment and the theoretically predicted
potential in the probed range.

Lastly, we consider the scattering through the |O1s−12b1
1〉

resonance [see Fig. 3(c)]. This spectrum exhibits only bend-
ing excitations because the 2D stretching potentials of the
|O1s−12b1

1〉 and ground states are the same [11]. Thus, the
nuclear wave packet � in the |O1s−12b1

1〉 core-excited state
propagates only along the bending coordinate Qb [Fig. 1(b)].
The projection of � trapped in the valley of the bending
potential onto the ground state allows us to recover the 1D
cut of the ground-state PES along Qb. The bending potential
of H2O has two minima (Qe1 = 0 and Qe2 = 3.891 a.u.),
symmetric around the angle θ = ∠(HOH ) = 180◦, which
corresponds to the top of the barrier at Qe = 1.632 a.u.
Therefore, we use a piecewise defined potential function
Vb formed by two nonoverlapping Morse potentials VM (Q)
and VM [−(Q − Qe2)] (14) connected by a parabolic barrier
U (Q − Qe) = Umax − η(Q − Qe)2:

Vb(Q) =

⎧⎪⎨
⎪⎩

V (Q),Q � −� + Qe,

U (Q − Qe),−� + Qe � Q � � + Qe,

V (−(Q − 2Qe)),Q � � + Qe.

(15)

The morse potentials and U (Q − Qe) are matched at the
points Qe ± �, where � is a fitting parameter. The parameters
ωe = (201 ± 2) meV, ωexe = (1.9 ± 0.4) meV, and � > Qe

were determined by a fit to the spectrum of the potential Vb

to the experimental data, with the mass of the bending mode
μ = μb = 1.083 a.m.u. The reconstructed potential along the
bending coordinate Qb is compared to the ab initio simulation
in Fig. 3(c). The limited number of vibrational states in the
experimental spectrum does not allow to define precisely
the height Umax of the barrier U (Q − Qe). However, the
least-squares method employed yields a confidence interval
of 1.09 eV < Umax < 1.70 eV [see Fig. 3(c)] for the linearity
barrier. This confidence interval is consistent with the ab initio
values given by our RASPT2 calculations (Umax = 1.42 eV)
and the coupled cluster value from Ref. [30] (Umax = 1.37 eV).
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VII. CONCLUSIONS

A rigorous calculation of multidimensional potential-
energy surfaces is a formidable computational task, especially
far away from equilibrium where accurate, but computationally
costly, multiconfigurational techniques are required. Hence,
there is a vital need to reconstruct the potentials directly
from the experiment. In this study we validated a method to
experimentally extract one-dimensional cuts through the mul-
tidimensional ground-state PES of molecular systems using
vibrationally resolved RIXS spectra of the water molecule. We
utilized the diverse nature of three different O 1s core-excited
PES to prepare highly directional nuclear wave packets which
were projected onto the ground state in the RIXS process. The
physical reason for the reduction of dimensionality, and for
the related selection of the directions of the one-dimensional
cut, is the high confinement of the wave packet along the
valleys of the PES oriented differently for each core-excited
state. The quantum-mechanical justification for the extractions
of the selected one-dimensional potential cuts was given by
relating the pseudospectrum, defined as the centers of gravity
of clustered vibrational peaks measured in RIXS spectra, to
the eigenstates of the one-dimensional Hamiltonian along the
direction of propagation of the core-excited wave packet.

Core-excited states of different elemental sites (C,O,N,
etc.) have distinct PESs. These manifolds of intermediate-state
PES topologies significantly enlarge the number of directions
for 1D cuts of PES which are accessible through RIXS. As
shown by many experimental studies of polyatomic systems
[5,13,32,33], only a few vibrational modes related to the
core-excited atom are active. This state- and site-specific
selection of only a few excitation-center-related vibrational
modes, together with direct access to high vibrational states
in a single shot, makes RIXS a powerful method, yielding
access to cuts through PESs in molecules over highly distorted
geometries, which complements other vibrational probes.
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APPENDIX: PROOF OF EQ. (10)

Let us show that

〈ψm�|ψn1n2〉 ≈ 0, m �= n = n1 + n2, (A1)

taking into account that the spacing δεn1n2 between levels εn1n2

within the n = n1 + n2 manifold is much smaller than the
spacing δεn between the eigenvalues εn of the 1D Hamiltonian
h1,

δεn1n2 � |εm − εn|, n �= m. (A2)

Here

h2|ψn1n2〉 = εn1n2 |ψn1n2〉,
h1ψm = εmψm. (A3)

Let us expand the wave packet |ψm(Q1)�(Q2)〉 in the series
over full set of eigenfunctions |ψn1n2〉 of a strict Hamiltonian
h2 = h1 + δh:

|ψm(Q1)�(Q2)〉 =
∑
n1n2

cn1n2 |ψn1n2〉,

|ψm(Q1)�(Q2)〉 = |ψm(Q1)〉|�(Q2)〉. (A4)

To find the expansion coefficients cn1n2 , let us use the identity
h2|ψm�〉 = (h1 + δh)|ψm�〉, Eq. (A3), and the expansion
(A4):

(h1 + δh)|ψm�〉 = (εm + δh)|ψm�〉
= (εm + δh)

∑
k1k2

ck1k2 |ψk1k2〉

= h2

∑
k1k2

ck1k2 |ψk1k2〉

=
∑
k1k2

ck1k2εk1k2 |ψk1k2〉, (A5)

where δh = h2 − h1 is the deviation of the strict Hamiltonian
from h1. Multiplying this equation (from left) by 〈ψn1n2 | we
get the following eigenvalue problem:

(εm − εn1n2 )cn1n2 +
∑
k1k2

〈ψn1n2 |δh|ψk1k2〉ck1k2 = 0. (A6)

This equation results in the following expression for the
expansion coefficients:

cn1n2 = A(m)
n1n2

εm − εn1n2

,

A(m)
n1n2

≡ −
∑
k1k2

〈ψn1n2 |δh|ψk1k2〉ck1k2 . (A7)

Let us write down these coefficients for two distinct cases:

cn1n2 = A(m)
n1n2

εm − εn1n2

, n1 + n2 �= m,

cm1m2 = A(m)
m1m2

εm − εm1m2

, m1 + m2 = m. (A8)

Now one can write the ratio of our interest:

cn1n2

cm1m2

= A(m)
n1n2

A
(m)
m1m2

(
εm − εm1m2

εm − εn1n2

)

≈ A(m)
n1n2

A
(m)
m1m2

(
δεm1m2

εm − εn

)
. (A9)
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Apparently, the sum A(m)
n1n2

[see Eq. (A7)] has the same order
of magnitude for different pairs (n1n2):

A(m)
n1n2

≈ A(m)
m1m2

. (A10)

Thus we get the final result, taking into account the property
(A2) of our spectrum:∣∣∣∣ cn1n2

cm1m2

∣∣∣∣ ≈
∣∣∣∣ δεm1m2

εm − εn

∣∣∣∣ � 1. (A11)

This means that the main contribution in the expansion (A4)
of |ψm�〉 gives the eigenfunction of the mth group:

|ψm�〉 ≈
∑

m′
1+m′

2=m

cm′
1m

′
2

∣∣ψm′
1m

′
2

〉

=
∑

m′
1+m′

2=m

∣∣ψm′
1m

′
2

〉〈
ψm′

1m
′
2

∣∣ψm�
〉
,

〈ψn1n2 |ψm�〉 ≈ 0, n1 + n2 �= m. (A12)
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