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Abstract

The inter-Coulombic decay (ICD) process, where one electronically-excited species

relaxes, while the neighboring one is concomitantly ionized, is recently discovered like-

wise in atomic, molecular, biological, and nanostructured systems. Any theoretical

prediction of it relies strongly on an accurate treatment of the involved resonance and

continuum states. Here, we describe laser-induced ICD in quantum dots with elec-

tron dynamics at a multiconfiguration time-dependent Hartree-Fock level for the first

time for a two-dimensional continuum, which was possible by implementing an efficient

Multigrid POTFIT representation of the Coulomb interaction, such that ICD control

with laser polarization is within reach. Conclusively, ICD turns out to be much faster

in laterally-arranged self-assembled or lithographic quantum dots connected to a two-

dimensional wetting-layer continuum than in previously investigated dots in nanowires.
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1 Introduction

The inter-Coulombic decay (ICD) has gained much attention in atomic and molecular physics

since its theoretical prediction 20 years ago.1 The experimental proof from electron spec-

troscopy2,3 and coincidence measurements4 in noble gas clusters followed at amazing speed.

The reason is that the necessary experimental techniques had already been established for

studying the Auger process. In contrast to the Auger effect, in ICD one atom or molecule in

a cluster is inner-valence ionized or excited and thereafter the vacancy is filled while a neigh-

bor is ionized via long-range, ultra-fast energy transfer. Besides having been investigated

in numerous molecular systems and with several other techniques,5 ICD has attracted the

attention of scientists in other communities and led to prospects in biology and medicine.6,7

Furthermore, ICD has found its way into nanotechnology, e.g., for a pair of singly-charged

non-coupled semiconductor quantum dots (QDs),8,9 where QD-ICD was predicted to be the

dominant decay channel of a two-electron Feshbach resonance state delocalized over two

QDs. In this respect, Coulomb interaction induces the simultaneous excitation of an electron

from one QD into the continuum, i.e. the QDs’ wetting layer or surrounding bulk material,

and relaxation of the other electron into a lower bound state of the excited QD.9 But an

experimental proof is yet to come.

Possibilities to detect ICD in QDs require detection of outgoing electrons and (tran-

sient) determination of level occupations. Hence, they range from photocurrent measure-

ments10–12 over all-electrical schemes for transport spectroscopy13,14 or capacitance spec-

troscopy15 to optical detection schemes like infrared transmission spectroscopy,15 resonance

fluorescence,14,16–18 or photoluminescence spectroscopy.11,12,19,20

There are, however, several reasons for ICD not having been discovered experimentally in

QDs, yet. On the one hand, the controlled fabrication of pairs of QDs which fulfill the ICD

energy condition as well as the geometrical constraint of been separated enough to suppress

tunneling, is in no way trivial. On the other hand, if this was achieved, the necessary

measurement techniques would have to be established for the paired QD structures. For
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example, combined transient resonance fluorescence and charging measurements14 would in

principle be applicable to paired QDs, but so far only single dots have been measured. In this

respect, vertically-arranged QD molecules have already been studied with photoluminescence

pump-probe and photocurrent measurements,21,22 but those QD molecules are tunneling-

coupled and therefore do not allow for ICD.

Systemwise, QD-ICD has been predicted for colloidal QDs.8 Such are relatively straight-

forward to produce in solution with decent control over the inter-QD distance,23–25 but pho-

tocurrent measurements even on single colloidal QDs are still at their infancy.26 Predictions

for solid state materials have also been reported as in the case of pairs of vertically-aligned

QDs,9,27 as can be, for instance, realized by embedding dots into semiconductor nanowires,

in which excellent control of the QD charging is possible,28–30 whereas transient spectroscopy

and photocurrent measurements are to our knowledge not reported.

Both described systems differ from each other by another key aspect, namely, the number

of possible directions into which the ICD electron can leave the QD pair. These are all three

Cartesian directions in the case of colloidal QDs,8 but just one, say the z direction parallel

to the alignment, for nanowire QDs.9,27 This last aspect entails the following complication:

When the emitted electron is confined to only move along the QD pairing direction, it

enters a strongly repulsive Coulomb region when approaching the remaining electron in the

neighboring QD. As a consequence, it is either back-scattered, thus implying a possibility

for recapture or self-interference, or otherwise it may in cases tunnel the Coulomb barrier.

As result, the rate as function of the inter-QD distance, and of other geometrical parameters

as well,31,32 is not ultimately predictable with the typical asymptotic ICD rate equation as

Γ ∝ R−6, but it rather oscillates around it.9,33

Such oscillations have never been observed for ICD with a three-dimensional continuum,

i.e., vacuum in the atomic and molecular examples. Hence, we assume that the effect is

likely to be overcome by allowing for a second continuum direction. Pictorially one can

imagine how then the ICD electron reaches the Coulomb barrier and simply moves around
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it. Obviously, the ICD process should at the same time become more efficient when opening

a second channel, for instance along the x-direction, through which the electron can leave

the QD pair. Rates would, in principle, simply add as Γtot = Γx + Γz.

Eligible QDs with two-dimensional (2d) continuum are, e.g., lithographic QDs with elec-

trostatically confined electrons. Here, a 2d electron gas (2DEG) created between two semi-

conductor thin films of different band gap, is further confined by metallic gates to define the

regions of the QD.34 Another realization may be epitaxially grown self-assembled QDs in a

lateral arrangement.35–37 These are fabricated by atomic deposition on a semiconductor sur-

face, the wetting layer, of higher gap where QDs form spontaneously as small islands and are

afterwards covered with another semiconductor layer of again higher band gap. A prediction

of ICD for such QDs will lie the foundation for further possibilities of experimental proofs

of ICD, particularly because the mentioned QD types are more straightforwardly combined

with potentially relevant measurement techniques as well.14,21,22

Apart from the works on ICD decay, there have been studies on ICD initiation in QDs

in nanowires by linearly polarized laser pulses,27 including process control by intensity38,39

and focus.39 ICD in the anticipated systems with 2d continuum opens up an extended laser

control possibility through polarization. We specifically aim at controlling the direction of

the ICD electron leaving the QD in dependence on the applied polarization.

Let us finally unroll some other train of thoughts regarding the theory of ionization

processes like ICD. It is well known that an accurate theoretical description of continuum

states poses computational challenges. In our former9 and anticipated computations of the

electron dynamics of ICD we use the multiconfiguration time-dependent Hartree (MCTDH)

method40,41 as implemented in the Heidelberg MCTDH program42,43 with a spatially an-

tisymmetrized wavefunction to treat fermionic systems. Wavefunctions and operators are

expressed in a discrete variable representation (DVR) basis.42,44 This has the advantage that

continuum and bound electrons are treated on the same footing, i.e., we do not need to

bridge an accuracy gap as intrinsic to, e.g., the R-matrix method.45 The price for this accu-
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racy is, however, the DVR itself spanning along each Cartesian direction for each electron

and being significantly larger for a continuum direction (> 100 DVR basis functions) com-

pared to a confined direction (< 10 DVRs). To illustrate this issue, we shall refer to our

previous experience with a quasi-1d system,31 where only z was allowing for a continuum.

A grid of Nx = Ny = 5 for the confined region and Nz = 140 points for the continuum was

used, with Nf representing the number of grid points in the direction f (cf. Sec. 2.3). ICD

rate calculations with two electrons in that system required 75 hours of total CPU time for

a propagation of 12.8 ps. This is not even a long propagation duration and should be ten

times longer for observing ICD. Considering that a simple, true 2d problem with a grid of

Nx = Nz = 140 points and omitting the y direction is estimated to take 1979 hours (∼ 82

days), a quasi-2d calculation would hence become forbiddingly long, i.e., several years, if we

added the extra confinement dimension with Ny = 5.

In this work, we shall therefore consider the true 2d problem and, for this, will resort

to the use of tensor-decomposition algorithms to reduce the representation of quantities, in

particular the representation of the Coulomb potential on the grid. As it will be shown, this

will reduce drastically the computation time. The traditional, standard POTFIT method

transforms general multi-dimensional potential energy surfaces (PES), as in our case the

Coulomb potential, into a sum of products of grid-based potential basis functions (Tucker

expansion).46,47 It can be shown that this product form is needed in MCTDH in order to

achieve its efficiency.42 POTFIT is done on the full grid with significant memory consump-

tion, hence, it generally presents a severe limitation with respect to the size of the grid that

it can handle numerically, i.e., up to 109 grid points. Because of this, several approaches

have been recently developed. An interesting feature of all of them is that they provide a

representation of the decomposed quantity, typically a potential, whose quality is compa-

rable to that of a POTFIT, however, with a substantial (orders of magnitude) decrease in

computation time. In chronological order, Multigrid POTFIT (MGPF)48 circumvented the

dimensionality issues by avoiding computation on the full grid and, instead, a hierarchy of
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grids was used. More recently, the Monte-Carlo POTFIT49 method replaces numerically

exact integrals with Monte Carlo ones. Finally, the Multi-Layer POTFIT algorithm50 uti-

lizes a radically different hierarchical representation based on a High-Order Singular Value

Decomposition.51 For the sake of completeness it should be mentioned that other methods

exist, but we circumscribe our discussion to those which are compatible with the Heidelberg

MCTDH implementation and we will use the MGPF method.48

The paper is organized as follows: In Sec. 2 the theoretical and computational details

are presented. The results can be found in Sec. 3. Here, we first determine the electronic

structure of the two-electron QD pair (3.1) followed by an analysis on the MGPF calculations

(3.2). A geometrical study is done by the variation of the QD distance to investigate the

asymptotic ICD rate in terms of the 2d system (3.3). Finally, the laser control options of the

ICD process are studied for laser excitations of different polarizations (3.4). With special

view on the spatially resolved density, we find out more about the direction of the continuum

electron for linear polarization in each direction (3.4.1) as well as circular polarization (3.4.2).

The conclusions can be found in Sec. 4.

2 Computational details

2.1 Model system

The following potential models the QD pair throughout our studies,

VQD(x̂, ẑ) = −D
∑
j=L,R

exp {−bj[(ẑ − zj)2 + x̂2]}, (1)

as illustrated in Fig. 1. The model of previous studies, which was a sum of aligned inverse

Gaussian potentials only in the z direction,9,31–33 is extended here by a second direction that

allows electronic motion also along x. The sum in Eq. (1) runs over the two QDs j called

“left” (L) and “right” (R). Along the z direction the QDs are centered at zL,R = ∓54.18 nm,

6



Figure 1: Visualization of the quantum dot pair model potential with two centers along the
z direction defining a wide left (L) and a narrow right (R) QD.

respectively, unless otherwise stated. The centers in x direction are set to zero. Both QDs

are of the same depth D = 21.67 meV. The width parameters bL,R = 4 ln (2)/r2
L,R are defined

by the full widths at half maximum rL = 36.08 nm and rR = 18.04 nm of the cylindrically-

symmetric dots.

Note that the model system applied here is only 2d for reasons of computational feasibility

(cf. Sec. 1). In previous studies, we had calculated ICD in both a quasi-1d system, in

which the inverse Gaussian potentials in z direction were supplemented with continuum-

free harmonic oscillator potentials in x and y, and a true 1d system along the z direction.

The differences found among these systems are, if at all, of numerical nature.33 Hence,

we are confident that the inclusion of the y coordinate would not qualitatively change the

fundamental dynamics that we describe for the true 2d system.

All calculations have been performed in atomic units. For readability and comparability

the physical quantities are here converted into the material specific International System

(SI) Units of GaAs based on the effective mass approximation,52 with the effective electron

mass m∗ = 0.063me and the dielectric constant κ = 12.9.53
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The electronic Hamiltonian for the two electrons i = 1, 2

Ĥel =
2∑
i=1

[
−1

2

∂2

∂xi2
− 1

2

∂2

∂zi2
+ V̂QD(xi, zi)

]
+ V̂ reg

Coul(r12) (2)

contains the operators for the kinetic energy, the QD potential of Eq. (1) and the Coulomb

interaction. The latter is given in two dimensions in a regularized form,

V̂ reg
Coul(r12) =

(
r12

2 + a2e−b r12
)−1/2

. (3)

It contains the distance between the electrons r12 = |~r1−~r2| =
√

(x1 − x2)2 + (z1 − z2)2. The

regularization is done with a = 0.1 a.u. and b = 100 a.u. to avoid singularities. Parameters

a and b were chosen to not alter V̂Coul anywhere except at the coalescence point of both

electrons as was used likewise for the quasi-1d case.

The time-independent Schrödinger equation

Ĥel|Φα〉 = E2e
α |Φα〉 (4)

defines the two-electron eigenstates

|Φα〉 = |Xm1Zn1 , Xm2Zn2〉 with the discrete energies E2e
α . Some of them are to a good approx-

imation composed of the single-electron bound states |Xmi
Zni
〉 with the respective quantum

numbers mi in x and ni in z direction for electron i = 1, 2. Continuum states shall not be

addressed here, since all observations for ICD can be made from studying the populations

of localized states or the wavefunction density as described below.

The decay of singlet or triplet states has been shown to give very similar rates.33 Hence,

we are free to consider solely spin triplet states, for which the antisymmetry condition dic-

tates that at least m1 6= m2 or n1 6= n2 must be true. This reduces the number of localized

eigenstates in comparison with the singlet case facilitating the analysis of the data.
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2.2 Electron dynamics

The ICD process in the two-electron QD pair system shall be initiated by a preceding exci-

tation of the system’s ground state with a resonant π-pulse, which completely depopulates

the ground state and maximally populates the resonance states besides possible ionization

effects. To study this, we have to resort to the time-dependent Schrödinger equation

i
∂

∂t
Ψ(x1, x2, z1, z2, t) = Ĥ(t)Ψ(x1, x2, z1, z2, t), (5)

with the Hamiltonian

Ĥ(t) = Ĥel + Ĥfield(t). (6)

In addition to Ĥel from Eq. (2) the time-dependent Hamiltonian contains a term for the

electron-field interaction within the semiclassical dipole approximation

Ĥfield(t) = −~E(t) · ~̂µ, (7)

with the scalar product of the dipole moment vector ~̂µ = −
∑2

i=1 (~exx̂i + ~ez ẑi) and the time-

dependent electric field vector

~E(t) = η g(t) Θ(tpulse − t)Θ(−z)

× [~ex εx sin (ωt+ ϕ) + ~ez εz cos (ωt+ ϕ)] (8)

with the field strength η, pulse length tpulse, photon energy ω and phase ϕ. The laser pulse

is shaped by the envelope function g(t) = sin2 (πt/tpulse). The intensity of the laser is related

to the field strength via I = η2c (8π)−1 with the speed of light in vacuum c. The ellipticity εx

and εz serve as control parameters for the polarization of the laser field in x and z direction.

If either εx = 0 or εz = 0, the light is linearly polarized. Exciting with equal field strengths in

9



both dimensions produces light of circular polarization, i.e., εx = εz. Accordingly, elliptically

polarized light is obtained when εx 6= εz and εx, εz > 0. The phase is kept constant ϕ = 0 for

all calculations. The first Heaviside function terminates the laser at tpulse, while the second

one adjusts the laser focus in z onto the left QD. In our previous studies on the QD pair

with only one continuum dimension we have shown that focusing the laser on the left QD

reduces direct ionization processes significantly and thus facilitates the observation of ICD.39

It should be noted that it is possible to carry out this experimentally by the use of shadow

masks.54 Moreover, we apply complex absorbing potentials (CAP),55–58

Ŵ±
qi

= −i ηCAP|qi − q±|4Θ(± (qi − q±)), (9)

in both directions ± of each DOF qi = x1, x2, z1, z2 to remove continuum electrons which

otherwise would be reflected at the grid boundaries. The CAPs are of 4th-order and

strengths ηCAP = 8.6997× 10−6 a.u. With the Heaviside function the starting points are

set to q± = ±325 nm, i.e., well beyond the area of the QDs. For a defined time interval the

quantum flux into the CAPs is given by

F q
± =

∑
i=1,2

∫
〈Ψ(t)|W±

qi
|Ψ(t)〉 dt. (10)

Since we applied a CAP at each direction ± of each dimension q = x, z we obtain four

contributions and the total flux simply adds as F = F x
− + F x

+ + F z
− + F z

+.

For the result analysis the populations of the two-electron states (|Φα〉) are calculated

by projection on the time-dependent wavefunction Pα(t) = |〈Φα|Ψ(t)〉|2. Further, the elec-

tron density of a certain state ρα(x, z) =
∫∫
|Φα(x, x′, z, z′)|2dx′dz′ and the time-dependent

electron density of the wavefunction ρ(x, z, t) =
∫∫
|Ψ(x, x′, z, z′, t)|2dx′dz′ are analyzed.
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2.3 2d Coulomb potential representation with Multigrid POTFIT

As indicated in the introduction, MCTDH quantum dynamics calculations are grid-based.

As a result, quantities such as the wavefunction or the potential have to be mapped onto a

multidimensional grid. A minimal grid size is necessary to converge the numerical results

up to a desired accuracy. We shall refer to this converged grid as the primitive or fine grid,

hereafter. Both the process of expressing a quantity on a grid as well as the storage of

the resulting tensor, which is typically vectorized, can computationally be very expensive.

Indeed, the first issue requires the computation of the considered quantity being fast and

accurate. The second issue, in turn, might bear two drawbacks: (i) the storage itself (cf.

curse of dimensionality59) and, more relevantly, (ii) the possibility of efficiently operating

with such a quantity. Although storage is nowadays not an issue, being able to allocate

the necessary quantities in memory might be. A solution to all of these bottlenecks can

be obtained by transforming the required quantities, such as the Coulomb interaction, into

Tucker form, that is, a sum of products of one- (or low-) dimensional basis functions.46,47 The

need for expressing all grid quantities in Tucker form is further a specific MCTDH condition.

In our two-electron QD pair system this applies to the non-separable Coulomb potential [cf.

Eq. (3)]. To this end, we have used the tensor-decomposition algorithm Multigrid POTFIT,48

briefly described in the following lines.

First, it should be noted that our 2d two-electron system is treated as a 4d-problem

with (x1, z1) and (x2, z2) being identical coordinates to guarantee the indistinguishability

of electrons. The wavefunction is expanded in 140 sine-DVR basis sets within the interval

[−541.8 nm, 541.8 nm] for each DOF, and a full expansion of the potential requires 5GB of

memory. The set of points that is thereby generated constitutes our fine or primitive grid.

It should be noted that despite its dimensionality, it can be considered as a small-medium

size grid with 3.84× 108 points. To ensure an appropriate accuracy of the MGPF potential

representation, we consider a series of four expansions differing in the definition of the coarse

grid, that is, subsets of the fine one with nxi/zi points per DOF.48 The grid points are
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determined by selecting every (i) second point (nxi/zi = 70), (ii) third point (nxi/zi = 47),

(iii) fourth point (nxi/zi = 35), and (iv) fifth point (nxi/zi = 28). As it should be obvious, the

quality of the approximations decreases as the number of basis sets, respectively coarse grid

points, is reduced. For the sake of comparison, we have also performed a regular POTFIT

calculation (70 points/DOF) on the same grid. The calculation of the PES on the fine

grid took 17 min using 12 processors, in contrast to the equivalent MGPF calculation which

took 4 min 30 s on a single processor. The remaining MGPF calculations took 1 min 56 s

(47 points/DOF), 1 min 23 s (35 points/DOF), and 50 s (28 points/DOF). It will be seen

later that MGPF provides results of comparable accuracy to regular POTFIT at much lower

computational cost.

3 Results

3.1 Electronic structure

A first analysis of the single-electron structure reveals the quantum numbers m = 0, 1, 2 and

n = 0, 1, 2, 3 for the discrete levels in x and z direction, where for n = 0, 2 and 3 the electron

density is localized in the left QD and n = 1 is the only level in the right QD. Among

several localized and continuum two-electron states we determine three states that are the

relevant ones for ICD in the QD pair. They are obtained by a relaxation calculation, i.e.,

propagation in imaginary time, of which we check the convergence with number of grid points

and single particle functions. These are the ground state (GS) |X0Z0, X0Z1〉 with energy

E2e
GS = −4.67 meV [cf. Fig. 2(a)], a resonance state in x direction (RES-X) |X0Z1, X1Z0〉

with E2e
RES−X = 2.70 meV (b), and a second resonance state in z (RES-Z) |X0Z1, X0Z2〉

with E2e
RES−Z = 2.73 meV (c). The density shows that for the ground state (a) each QD is

populated by one electron in the respective lowest state. The resonance states in x (b) and

z (c), of which ICD shall be observed, have one electron in the lowest state of the right QD,

i.e., |X0Z1〉, and the other in either the x- or z-polarized first excited state of the other dot,
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Figure 2: Two-electron densities of the ground state ρGS(x, z) (a), and the resonance states
in x, ρRES−X(x, z) (b), and in z, ρRES−Z(x, z) (c).

namely, |X1Z0〉 or |X0Z2〉. Their energies show a numerically small non-degeneracy, due to

the non-symmetric placement of the QDs on the DVR grid.

3.2 Choice of MGPF Coulomb potential

We have performed relaxations and propagations using Coulomb potentials obtained by the

MGPF method under variation of the coarse grid for x and z identically. The properties and

results of the calculations are presented in Table 1. For any comparisons among data we use

the values of the calculation on the largest coarse grid (nxi/zi = 70) as reference assuming it

to be most accurate, because energies and rates are stable also over smaller coarse grids.

The size of the Coulomb potential expansion decreases for smaller nxi/zi (cf. Table 1),

which makes the computations faster as can be seen by comparing the CPU times Trlx for

relaxation of 0.064 ps and Tprop
x,z for a propagation of 64 ps of the x- and z-resonance state
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Table 1: Benchmark of the MGPF method for different number of coarse grid points nxi/zi
per DOF i = 1, 2.a

nxi/zi file size Trlx [h] (Tprop
x , Tprop

z ) [h] Γx [meV] Γz [meV] ωx [meV] ωz [meV]
70 733 MB 29.3 (37.7, 47.7) 7.80×10−5 2.95×10−4 7.370 7.397
47 331 MB 13.8 (16.4, 18.1) 7.94×10−5 3.07×10−4 7.369 7.391
35 184 MB 8.1 (10.7, 11.5) 7.08×10−5 3.17×10−4 7.372 7.404
28 118 MB 5.5 (7.1, 9.2) 8.00×10−5 7.54×10−5 7.362 7.363

a Compared are the potential sizes, the computation durations Trlx for one relaxation time
step (0.064 ps) and Tprop

x/z for one propagation time step (64 ps) of the resonance state
decays, the ICD rates Γx/z, as well as the resonance energies ωx/z as difference between
ground and resonance state energies.

decay. Note that these times are meant to give a general trend only, as each calculation

is to some extend influenced by the processor performance and work load of the compute

cluster, as can be seen from Table 1. The gain in time is faster than linear with respect to

the number of points, but to determine a suitable setup for the calculations one needs to

critically incorporate the accuracy as well.

Hence, the ICD rates Γx and Γz are determined from the exponential decay of the x-

and z-resonance states as depicted in Fig. 3. First of all, the decay of the z-resonance is

significantly faster than the one of the x-resonance, on average by factor 4.0. In a one-

electron picture, this is presumably because the overlap of the first excited state of the left

QD with the electron in the ground level of the right QD is larger than for the |X1Z0〉,

hence facilitating energy transfer. However, at this point we would like to point out that the

rates are ultimately relevant for the decision on the coarse grid parameters nxi/zi , with which

we perform further dynamics. If we visually compare the decay for nxi/zi = 70, 47 and 35,

then the curves do not differ much irrespectively of the grid size, i.e., all three cases reveal

the same physics, namely, both decays follow an exponential trend as observed in previous

works. Contrarily, for nxi/zi = 28 the z-resonance state is unstable causing the oscillations

of the solid black curve in Fig. 3.

In an earlier work31 we have optimized rates towards highest accuracy with lowest compu-

tational effort with respect to different parameters including the grid size. There, absolute de-
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Figure 3: (Color online) Long-term decay of the x-resonance (dashed lines) and z-resonance
state (solid lines). The populations Pα(t) are calculated using Coulomb operators established
with MGPF for coarse grids of basis functions numbers nxi/zi = 70, 47, 35 and 28 for each
DOF.

viations from the converged reference value that were tolerated were 4.1× 10−5 meV. Here,

we observe that the absolute deviations from the reference value for the most outlying results

for nxi/zi = 35 are 7.2× 10−6 meV for the decay of the x-resonance and 2.2× 10−5 meV for

the decay of the z-resonance and thus well within that tolerance. Besides, the energy differ-

ences ωx and ωz are well in line with one another. Hence, we selected nxi/zi = 35 for further

calculations, which will give a speedup of factor four in comparison to nxi/zi = 70.

3.3 Decay rates as function of distance

In the previous section it was already shown that ICD of the resonance states is faster in z

than in x for the caseR = 108.4 nm. Here, we want to verify this trend for a range of distances

to see whether oscillations reduce according to our hypothesis in Sec. 1. Fig. 4 shows the

rates Γx and Γz under variation of the QD distance within 54.2 nm ≤ R ≤ 151.7 nm. The

rates approach one another most closely at 86.7 nm and again towards 140.9 nm displaying

the largest relative rate differences at 119.2 nm. Due to the logarithmic scale the largest

absolute distance is of course met at 54.2 nm with 1.1 × 10−2 meV and the smallest is

2.4× 10−5 meV at 151.7 nm.
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Figure 4: Decay rates Γx,z as a function of QD distance R in double logarithmic scale for
the decay in x (dots around solid line) and z (triangles around dashed line). The lines show
the fits ∝ R−6.

Oscillation of rates has already been observed in former works on paired QDs sharing only

a 1d continuum.9,33 There the oscillations follow the exponential law with Γ ∝ R−6 known

from the analytical derivation of ICD from an asymptotic dipole-dipole coupling scenario.60

For the case of a one-dimensional continuum the oscillations have been found to be extremely

large with a maximal and a mean deviation of 222% and 85% from the R−6 leasts squares

fit, respectively. Compared to this the oscillations for a two-dimensional continuum are

relatively small with maximal (average) deviations of 50% (24%) for the z and 58% (30%)

for the x-resonance decay.

In fact, we did not expect to see the oscillations, because they are known from the quasi-1d

studies to originate from the Coulomb barrier of the remaining electron.9 Observing that the

oscillations persist implies a remaining Coulomb barrier which the ICD electron is not able to

avoid. As will be discussed in the following section, the ICD electron is indeed found on the

whole continuum plane, but some areas are vastly excluded due to Coulomb repulsion, which

will be elaborated for the case with distance R = 108.4 nm as was introduced in Sec. 2.1.
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3.4 Polarization effects

We have also studied the initiation of the ICD process in the 2d QD pair with resonant

π-pulsed laser fields of different polarizations exciting the ground state of initial popula-

tion PGS(t = 0) = 1. A pulse of the shape given in Eq. (8) shall be applied here, which

focuses on the left QD and hence minimizes the probability of direct ionizations. The field

strength is set to η = 2.85× 104 Vm−1 in accordance with previous studies,27,38,39 a value

that corresponds to an intensity of I = 1.39 kWcm−2. This allows population inversions for

times well-below the characteristic ICD times and simultaneously keeps the contribution of

direct ionizations by multi-photon excitations at a minimum. The photon energy is set to

the mean value of the resonance energies in x and z as listed in Table 1 for nxi/zi = 35,

i.e., ω = (ωx + ωz)/2 = 7.39 meV. The π-pulse durations have been determined in advance

by imposing continuous fields, where the population oscillates between ground and reso-

nance states, as the times for which the first population inversion is reached. They are

tlinear
pulse = 16.6 ps, telliptical

pulse = 14.8 ps, tcircular
pulse = 11.6 ps.

A first overview of the ground and resonance state populations Pα(t) with respect to time

is given in Fig. 5. The different subfigures show excitations with linearly (a, b), elliptically

(c, d) and circularly (e) polarized light within the first < 20 ps and the decays afterwards

until the final propagation time of 320 ps. Under linearly polarized light either the x- or

z-resonance is populated depending on the polarization direction. When going from linear to

circular polarization, i.e., when admixing more and more of the respective other polarization

direction, the resonance state population gains contribution of that resonance which was

admixed.

Let us first only analyze the populations right at the end of the pulse. As expected, for all

kinds of polarizations the ground state (blue solid line) is completely depopulated when the

pulse is finished. Under excitation with linear z-polarized light (a) the z-resonance state (red

dashed line) is populated to a maximum of 0.92 (not unity due to ICD and direct ionization

during the pulse38) and decays afterwards, while the resonance state in x (green dotted line)
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Figure 5: (Color online) Time evolution of the population Pα(t) for the ground state (blue
solid line) and resonance states in x (green dotted line) and z direction (red dashed line)
for resonant π-pulse excitations. The upper row displays the case of linear polarization with
εx = 0.0 and εz = 1.0 (a), and εx = 1.0 and εz = 0.0 (b) for the pulse length tlinear

pulse = 16.6 ps.
The middle row shows elliptical polarization with εx = 0.5 and εz = 1.0 (c), and εx = 1.0
and εz = 0.5 (d) with telliptical

pulse = 14.8 ps. In (e) the system is excited by circularly polarized

light with εx = εz = 1.0 and tcircular
pulse = 11.6 ps.

stays unpopulated at all times. The same principle holds for x-polarized light (b), but the

maximum of the x-resonance state is considerably smaller with 0.78. This stronger loss of

population during the pulse comes from the fact that direct ionization of the right QD has a

higher contribution for x- than z-polarized light as the laser can only be focused onto the left

QD in z. Note that in all cases ionization of the left QD can be ruled out, as the intensity

of the laser was chosen to only induce single-photon processes.

In Fig. 5(c) elliptical polarization with the full field strength in z (εz = 1.0) and half

strength in x (εx = 0.5) is applied. The intensity in x is thus only a quarter of the one in z,

because of the relation I ∝ η2. This is also reflected in the populations of the two resonance

states. The ratio of the two maxima of the z- and x-resonance state gives 0.70/0.18 ≈ 4.
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Analogously, for the opposite case in (d) with εx = 1.0 and εz = 0.5 the ratio of the maxima

of the resonances in x and z is 0.63/0.15 ≈ 4. In (e) the ground state is excited with

same strength in both directions (εx = εz = 1.0). Thus, we find equal populations in the

two resonance states after the pulse with a ratio of the maxima for x and z that gives

0.4/0.39 ≈ 1.

When comparing the populations for the different polarizations after the pulse, we see

in several cases exponentially decaying curves as anticipated from previous works as well as

from Sec. 3.2 from which in principle the ICD rate can be deduced. However, the decay of the

z-resonance state for elliptically and circularly polarized light is overlaid with oscillations [cf.

red dashed curve in Fig. 5(c)-(e)] which will be analyzed more closely in the next sections.

Oscillations for the x-resonance are also present, but owing to the fact that the decay is

one order of magnitude slower than in z (cf. Table 1, nxi/zi = 35) they can only be resolved

when zooming in on the curve. Despite these oscillations it is still possible to determine

decay rates mostly in agreement with Table 1, although we advise longer propagation times

for this.

To further understand the dynamics, we have performed a spatial analysis of the ex-

citation and decay for the differently polarized fields. We have plotted the density of the

wavefunction over the full configuration space (x and z) for different time steps (cf. Figs. 6-

8). For a better comparison and visibility the density for the excitation process is always

displayed below a cutoff density of 10−5, and for the decay below 10−7. All regions for which

the density is higher than that value are shown in white.

3.4.1 Linear polarization

Fig. 6 shows the density for excitation with linearly z-polarized light [(a)-(c)] and its decay

afterwards (d), as discussed for Fig. 5(a). Initially, at t = 0 [cf. Fig. 6(a)] the system is in

its ground state as illustrated by the two circularly-shaped instances of high electron density

(white) placed in the middle of the QDs and marked as “×”. At t = 0.5 tlinear
pulse (b) the laser
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reaches full intensity and we find density leaving the QDs into negative z direction as well as

negative and positive x direction. This can be ascribed to direct ionization processes, as the

majority of outgoing density vanishes when the laser is terminated at t = tlinear
pulse = 16.6 ps

(c), whereas most of the remaining density is in the z-resonance state. The plot in (d) shows

the density at 100 ps, i.e., a long time after the pulse. The decay is uniform, i.e., there is no

change in the shape of the density at least until our propagation ends at 320 ps. We find that

the z-resonance decays by emitting the electron from the right QD, which preferably leaves

into the positive z direction. It avoids the negative z direction due to the electron in the left

QD which induces an effective potential barrier as already observed in the 1d-system.9 The

case of predominant emission to the right, i.e., positive z direction was here always connected

to rates larger than the asymptotic R−6 line (cf. Sec. 3.3).9 And indeed also for the 2d case

we see the full-dynamics rate at R = 108.4 nm above the least-squares fitted linear rate [cf.

Fig. 4]. Other than with just a 1d continuum a further pathway for the outgoing electron

exists. It moves towards positive and negative x with tendency for negative z. Although

symmetry would seemingly not allow for a momentum transfer from the z to the x direction,

the non-separable Gaussian QD potential [cf. Eq. (1)] lifts this constraint.

To further confirm our findings of the dynamics we additionally analyze the quantum

flux of electron density into the CAPs [cf. Eq. (10)] from after the pulse, which is to exclude

contributions from direct ionization processes and concentrate on the motion of the ICD

electron only. For z-polarized light, we find that the flux is equally distributed in the x

(52.2%) and z (47.8%) dimensions. Along x it is also equal in negative (26.8%) and positive

(25.4%) direction, but along z we find that density favors the positive direction (46.2%),

while the remainder (1.6%) moves towards the negative z direction [cf. Fig. 6(d)].

Due to the additional emission direction x we assume ICD with 2d continuum to be faster

than ICD with 1d continuum. At this point, it is interesting to make again a comparison

to the 1d system considered in previous studies.9,27,38 First of all, it should be noticed that

if we simply remove the x direction from all present operators and wavefunctions, keeping
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Figure 6: (Color online) Electron density ρ(x, z, t) for the resonant π-pulse excitation with
linearly polarized light in z (a) at t = 0 ps, (b) t = 8.3 ps, (c) t = 16.6 ps, as well as (d) the
following decay at t = 100 ps. The maximum density displayed in color is 10−5 in (a)-(c)
and 10−7 in (d).

the remaining QD parameters unaltered, we are left with a 1d QD pair for which ICD is

energetically forbidden, which is caused by removing one factor of a non-additive Gaussian

potential from Eq. (1). As an alternative we change the continuum in x by confining it

with high potential barriers (103.0 meV, about 14 ωx) in the x direction that are placed

at x = ±43.3 nm. Then the decay of the z-resonance does not allow density to leave in

x direction and we obtain a diminished decay rate Γ1d
z = 1.98× 10−4 meV compared to

Γ2d
z = 3.17× 10−4 meV. This gives a 1.6 times longer decay time than that for allowing the

electron to leave also in x direction.
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Similarly, in Fig. 7 we show the electron density during excitation with a linearly x-

polarized laser and ICD that affects populations as described for Fig. 5(b). At t = 0 ps

[Fig. 7(a)] the system is again in the ground state. By the half of the pulse t = 0.5 tlinear
pulse

(b) the electron in the right QD leaves here likewise towards the positive and negative x

direction due to direct ionization processes, however now with a tendency towards positive

z. By comparison of the densities, the direct ionization is here stronger than in the case

of linear polarization in z [cf. Fig. 6(b)]. At t = tlinear
pulse = 16.6 ps (c) the system is in the

x-resonance state, while remaining continuum density vanishes into the CAP. The uniform

decay is shown at t = 100 ps (d), where the electron emitted from the right QD leaves in

positive and negative x and again spreads towards positive z. The density of the decay is

here a bit smaller than it was for the decay in z (cf. Fig. 6) as the decay in x is overall

slower. The flux analysis confirms that most of the density leaves along x (77.3%) with

similar distribution in negative (41.5%) and positive (35.8%) direction. This can be easily

understood since there is no Coulomb barrier hindering the electron from traveling along x.

The minor amount of density leaving in z (22.7%) is split into a major component that moves

in the positive z direction (19.7%) as visible by the density in Fig. 7(b), and the rest leaves

into negative direction (2.93%), which is again due to the barrier formed by the remaining

electron. This is comparable to our observations in 1d continua where a predominant flux

to the positive z direction let to an overall rate above the averaging R−6 rate when there is

a Coulomb barrier as is clearly visible from Fig. 4.

3.4.2 Circular polarization

Fig. 8 shows the density for the excitation with circularly polarized light leading to equal

population of the x- and z-resonance as described in the context of Fig. 5(e). The subfigures

8(a)-(c) depict the excitation process, while (d)-(f) show the density at representative times

during the decay.

As before, the system is initially in the ground state [Fig. 8(a)]. When the laser reaches
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Figure 7: (Color online) Electron density ρ(x, z, t) for the resonant π-pulse with linearly
polarized light in x (a) at t = 0 ps, (b) t = 8.3 ps, (c) t = 16.6 ps, as well as (d) the following
decay at t = 100 ps. The maximum density displayed in color is 10−5 in (a)-(c) and 10−7 in
(d).

full intensity at t = 0.5 tcircular
pulse = 5.8 ps (b) we observe population leaving along the negative

and positive x direction as well as negative z direction, which is basically a mixture of the ion-

ization physics described in the context of Figs. 6 (b) and 7 (b) with a predominance of direct

ionization upon x-polarization. The system populates a mixed state with equal contributions

of x- and z-resonance population. Hence, by the end of the pulse t = tcircular
pulse = 11.6 ps (c)

the density in the left QD shows a circular shape of wider range than that of the ground

state previously, washing out the double-maxima shape of the pure first excited states in the

left QD. The decay of the mixed resonance is non-uniform over time, a fact that connects to
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Figure 8: (Color online) Density ρ(x, z, t) for the resonant π-pulse excitation with circularly
polarized laser. The excitation is shown in (a) at t = 0 ps, (b) at t = 5.8 ps and (c) at
t = 11.6 ps with density cutoff at 10−5. The non-uniform decay is plotted (d) at t = 100 ps,
(e) at t = 180 ps and (f) at t = 240 ps with a density cutoff at 10−7.

the oscillations in z-resonance population shown in Fig. 5(e). Hence, we show representative

densities at times t = 100 ps, 180 ps and 240 ps, where the first and third connect to maxima

and the second to a minimum in that oscillations.

Based on the observations from Sec. 3.4.1 we would expect a density superposition of the

decay in z [Fig. 6(d)] and in x [Fig. 7(d)] which would basically show three maxima, one in the

positive z direction and the other two in the positive and negative x direction. However, the

excitation with the circular pulse leaves the excited state in an ever changing superposition of

x and z polarization. Inspection of the double-peaked density maximum at the place of the

left quantum dot reveals that it has a rotating nodal line. At t = 100 ps (d) it is diagonal such

that the density has lobs on the (−x,−z) direction and on the (+x,+z) direction. It follows

that then the emitted density should align with these lobs and perpendicular to them while

at the same time no density is going to be emitted into the negative z direction. Hence, out

of three expected high-continuum density areas we only see two that direct into the (−x,+z)

direction and the (+x, z = 0) direction, with slight distortion from perpendicularity. The
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same situation is encountered at t = 240 ps (f) while the situation inverts at t = 180 ps (e)

where the density maxima are in the (−x, z = 0) direction and the (+x,+z) direction. The

overall very same behavior is seen for elliptically polarized light with only slightly varied

intensities. Hence, we are not discussing that case further.

The flux analysis of the decay was done for one cycle of the oscillating density (132 ps).

It shows the ICD electron leaves in x by 57.4% and a little less in z with 42.6%. As before,

the motion in x is split equally with 29.6% in negative and 27.8% in positive x. Again the

motion into negative z direction is marginal with 1.3%, while the major part is in positive z

with 41.3%.

4 Discussion and conclusions

We present the ICD process for a true two-dimensional pair of QDs, where one QD in an intra-

band excited state relaxes while the other is ionized. Extending other studies there are now

two directions available for the ICD electron to leave which can be addressed specifically with

differently polarized laser pulses. All predictions are based on MCTDH electron dynamics

calculations Those are optimized for computational speed and accuracy by utilizing the

MGPF method for representing the Coulomb interaction potential in MCTDH form.

We predict the ICD process not only to be an important resonance decay channel in

paired QDs in a wire9,28,29 and in paired colloidal QDs,8 but likewise in laterally-arranged

self-assembled QD pairs35–37 as well as electrostatically defined 2DEG QD pairs34 with 2d

continuum, which is realized by an extended wetting layer. In those 2d QD arrangements

good control over the fabrication of well-defined array structures is possible. Moreover, their

charging can be controlled13,34 or processes be photo-initiated while electrons in the wetting

layer are detected.14,21 Therefore such QDs are already implemented in several devices, i.e.,

self-assembled ones in QD lasers.61 These are considerable advantages for the anticipated

experimental proof of ICD in QDs in comparison to the other theoretically investigated
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geometries.

The proof is, however, coming within reach not only for experimental reasons. Also the

physics of ICD in 2d is shown to lead to a faster decay than in the case of QDs in a wire,

making ICD more likely the dominant process of possibly competing radiative9 or phonon-

mediated62 decay. The speeding of ICD in 2d has its foundation in the two distinct decay

channels, that of the x- and of the z-resonance, which are both open when exciting with a

non-polar laser or even upon decay of the pure x or z-polarized due to Coulomb coupling

of the two dimensions. In this work we were able to address each of the two resonances

individually and to analyze its pure decay, when using linearly polarized fields. Via circular

or elliptical polarization we control the composition of the decaying state and the electron

emission direction. Electron emission turned out to be more intricate than simply being

aligned with the laser polarization direction and shall, for measurements, be controlled such

that most of the ICD electron reaches the available electron detector.

This will be most important once the process makes its way into a QD devices. Here

we are foreseeing for the singly-charged and intra-band excited QDs, an application field

in infrared detection,9,63 with again an efficiency gain over other QD geometries studied

before. In infrared detection the absorption of infrared light leads to free electrons forming

an electric current. In nowadays detectors this absorption is with a low cross section into the

surrounding wetting layer, i.e., the continuum, to speak in terms of our model. By contrast,

in an ICD-based detector, the respective infrared excitation would be into another bound

level of one of the QDs, hence with very high cross section. The bound level, as part of a

two-electron resonance state, decays with 100% efficiency and hence the detection sensitivity

may raise significantly.
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(49) Schröder, M.; Meyer, H.-D. Transforming high-dimensional potential energy surfaces

into sum-of-products form using Monte Carlo methods. J. Chem. Phys. 2017, 147,

064105.

(50) Otto, F. Multi-layer Potfit: An accurate potential representation for efficient high-

dimensional quantum dynamics. J. Chem. Phys. 2014, 140, 014106.

(51) De Lathauwer, L.; De Moor, B.; Vandewalle, J. A Multilinear Singular Value Decom-

position. SIAM J. Matrix Anal. & Appl. 2000, 21, 1253–1278.

(52) Sajeev, Y.; Moiseyev, N. Theory of autoionization and photoionization in two-electron

spherical quantum dots. Phys. Rev. B 2008, 78, 075316.

32



(53) NSM Archive - Physical Properties of Semiconductors. http://matprop.ru/GaAs basic

(accessed 21-Nov-2018), http://matprop.ru/GaAs_basic.

(54) Luo, J.; Lai, W.; Lu, D.; Du, C.; Liu, Y.; Gong, S.; Shi, D.; Guo, C. Pronounced

enhancement of exciton Rabi oscillation for a two-photon transition based on quantum

dot coupling control. J. Phys. B: At. Mol. Opt. Phys. 2012, 45, 035402.

(55) Kosloff, R.; Kosloff, D. Absorbing boundaries for wave propagation problems. J. Com-

put. Phys. 1986, 63, 363–376.

(56) Neuhauser, D.; Baer, M. The time-dependent Schrödinger equation: Application of

absorbing boundary conditions. J. Chem. Phys. 1989, 90, 4351–4355.

(57) Riss, U. V.; Meyer, H.-D. Calculation of resonance energies and widths using the com-

plex absorbing potential method. J. Phys. B: At. Mol. Opt. Phys. 1993, 26, 4503–4535.

(58) Riss, U. V.; Meyer, H.-D. Investigation on the reflection and transmission properties of

complex absorbing potentials. J. Chem. Phys. 1996, 105, 1409–1419.

(59) Bellman, R. E. Adaptive Control Processes: A Guided Tour ; Princeton University:

Princeton, 1961.

(60) Averbukh, V.; Müller, I. B.; Cederbaum, L. S. Mechanism of Interatomic Coulombic

Decay in Clusters. Phys. Rev. Lett. 2004, 93, 263002.

(61) Ledentsov, N. N. Quantum dot laser. Semicond. Sci. Technol. 2011, 26, 014001.

(62) Bande, A. Acoustic Phonon Impact on the Inter-Coulombic Decay Process in Charged

Quantum Dot Pairs. Accepted in Mol. Phys., 2018.

(63) Maimon, S.; Finkman, E.; Bahir, G.; Schacham, S. E.; Garcia, J. M.; Petroff, P. M.

Intersublevel transitions in InAs/GaAs quantum dots infrared photodetectors. Appl.

Phys. Lett. 1998, 73, 2003–2005.

33

http://matprop.ru/GaAs_basic


Figure 9: For Table of Contents Only.

34


	Introduction
	Computational details
	Model system
	Electron dynamics
	2d Coulomb potential representation with Multigrid POTFIT

	Results
	Electronic structure
	Choice of MGPF Coulomb potential
	Decay rates as function of distance
	Polarization effects
	Linear polarization
	Circular polarization


	Discussion and conclusions
	Acknowledgement
	References

