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The triangular spin lattice of NiBr2 is a canonical example of a frustrated helimag-

net that shows a temperature-driven phase transition from a collinear commensurate

antiferromagnetic structure to an incommensurate spin helix on cooling. Employing

neutron diffraction, bulk magnetization, and magnetic susceptibility measurements,

we have studied the field-induced magnetic states of the NiBr2 single crystal. Exper-

imental findings enable us to recapitalize the driving forces of the spin spiral ordering

in the triangular spin-lattice systems, in general. Neutron diffraction data confirms,

at low temperature below Tm = 22.8(1) K, the presence of diffraction satellites char-

acteristic of an incommensurate magnetic state, which are symmetrically arranged

around main magnetic reflections that evolve just below TN = 44.0(1) K. Interestingly,

a field-induced transition from the incommensurate to commensurate spin phase has

been demonstrated that enforces spin helix to restore the high temperature com-

pensated antiferromagnetic structure. This spin reorientation can be described as a

spin-flop transition in the (a–b) basal plane of a triangular spin lattice system. These

findings offer a new pathway to control the spin helix in incommensurate phases that

are currently considered having technical implications in the next-generation data

storage devices.
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I. INTRODUCTION

Noncollinear spins are generic to the systems with spin spirals, spin helicoids, canted

spins, and ferromagnetic (antiferromagnetic) domain walls. Such spin systems have attracted

significant interest in recent research activities since they are potential candidates for ultra-

dense magnetic storage devices 1–3. Spin helix mainly evolve in the presence of inversion

symmetry breaking and yields various unusual physical phenomena like electric excitation

of magnon 4,5 and magnetic skyrmions 6,7. Various microscopic driving mechanisms would

produce noncollinear spin ordering, and among them, Dzyaloshinskii–Moriya interaction

(DMI) is the most common in many systems 8,9.

Noncollinear spin arrangements in helimagnets also result from the presence of competing

ferromagnetic and antiferromagnetic Heisenberg interactions between spins 10–13. Consider-

ing exchange interactions model in a magnetic field of intensity H, the Hamiltonian H for a

triangular lattice can be expressed through the following Eq. (1)

H = −J1Σ<i,j>Si.Sj − J2,3Σ<<i,j>>Si.Sj −HΣiSi (1)

where, Σ<i,j> and Σ<<i,j>> represent the sum over the nearest neighbor (nn) and third

nearest neighbor (nnn), respectively 10. For ferromagnetic state (J1 > 0) with only nn

interaction, the ground state of such system would be commensurate to the underlying

lattice. However, on the other hand, for competing interactions such as J1 > 0 and the

AF third-neighbor interaction J3 < 0, an incommensurate ground state is more favorable

10,14–17.

Transition metal dihalides have long been considered as prototypes of antiferromagnets

with a triangular lattice 18–20,22–24. Most of the privious investigations on dihalides were

focused on the coupling between magnetism and ferroelectricity 19,20. NiBr2, an archetypal

dihalides displays a paramagnetic-antiferromagnetic phase transition at TN = 44.0(1) K

and then antiferromagnetic-incommensurate spiral transition at Tm = 22.8(1) K 22–24. The

ground state of the incommensurate spiral exhibits a threefold degeneracy with respect to

the three equivalent wave vectors of the lattice. This threefold degeneracy is predicted to

be a source of various distinctive ordered states, namely, multiple-q state 25. The multiple-q

state can also results skyrmionic state in such system, as proposed theoretically by Okubo

et al. 25.
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In this work, we have revisited the various characteristics of the incommensurate helix

phase in the single crystal NiBr2 using dc(ac) magnetization and magnetic susceptibilities,

neutron diffraction, and small angle neutron scattering. The experimental findings suggest

that NiBr2 has an incommensurate spiral ground state corrobarating previous investigations

19,20,22,23. We observed that the system responds to the structural symmetry of 120◦ by

populating the three equivalent wave vectors in the incommensurate state. In this report,

we emphasize on a magnetic-field-induced spin reorinetation from the incommensurate spiral

to collinear commensurate phase.

II. METHODS AND EXPERIMENTAL DETAILS

High-quality single crystals of NiBr2 were grown at the University of Amsterdam, using

a self-flux growth method starting from a stoichiometric mixture of Ni, and Br, as reported

in Tokunaga et al. and Kurumaji et al. 19–21.NiBr2 crystal forms naturally layered shape

with the c-axis perpendicular to planes that efficiently cleave. The nickel ions occupy a

single site in the Bravais lattice as shown in Fig. 1(a). Magnetic measurements at various

temperatures ranging across 2-300 K were carried out using the MPMS 7T device and PPMS

14T (Quantum Design) systems, in fields up to 14 T, which applied within and perpendular

of the basal plane .

Neutron diffraction experiments were carried out on the diffractometers E2, E4 and the

small-angle neutron scattering instrument V4 at the BER II reactor of the Helmholtz-

Zentrum Berlin (HZB) 26. In the part, magnetic fields up to 5 T were applied along and

perpendicular to the trigonal axis of the single-crystalline NiBr2 using a horizontal-field cry-

omagnet that restricts significantly the scattering geometry. E2 and E4 instruments use a

pyrolytic graphite (002) monochromator selecting the neutron wavelength λ = 2.4 Å. The

data were collected with two-dimensional position sensitive 3He detectors that were of dif-

ferent sizes at respective instruments. λ
2

filters were used at both E2 and E4 instruments

imply residual higher-order wavelength contamination at a level of less than 10−4. In addi-

tion, the small-angle neutron scattering measurements were carried out with instrument V4

that possess a large position-sensitive detector movable at the distance between 1 and 16 m

from the sample. In order to refine the magnetic structure of NiBr2, we have collected data

mainly in the (hhl) plane.
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The crystal and magnetic structure refinements were performed with the program Fullprof

27,28. The nuclear scattering lengths b(Ni) = 1.03 fm and b(Br) = 0.6795 fm were considered.

For the absorption correction (Gaussian integration), we used the absorption coefficient

µ = 0.12 cm−1. No secondary extinction correction has been applied.

III. RESULTS AND DISCUSSIONS

A. Magnetization and Susceptibility

Figure 2(a) illustrates the temperature dependence of the magnetic susceptibility χ =

M/H of NiBr2, where, the M is magnetization, and the H is magnetic field ranging between

1.0 and 14.0 T, which was applied perpendicular to the c-axis. In the case of NiBr2 at high

temperatures where χ = M/H measured the magnetization is directly proportional to the

applied magnetic field (i.e. linear in the field), the evaluated M/H values are identical to

the magnetic susceptibility at different fields are insensitive to the magnetic field strengths.

At lower temperatures, two well-distinguished anomalies can be discerned marking the

magnetic phase transition temperature that were determined from maxima of ∂T.χ(T )
∂T

. At H

= 1.0 T, the transition between the paramagnetic and an antiferromagnetic state is detected

at TN = 44.6(1) K. A closer inspection reveals that for increasing the magnetic field the tran-

sition shifts toward lower temperatures. The second transition between antiferromagnetic

to helical spin ordering takes place at Tm = 21.8 (1) K. As shown in Fig. 2(a), this transition

also shifts toward lower temperatures as a function of the magnetic field.

The temperature dependence of 1/χ(T ) and their fits with a modified Curie–Weiss law

are shown in inset panels of Fig. 2(a and b). The modified Curie–Weiss law can be expressed

by Eq.(2):

χ = C/(T − θp) + χ0 (2)

where, C represents the Curie constant and θp the paramagnetic Curie temperature. χ0 de-

notes the temperature-independent terms. The excellent quality of fits confirm the modified

Curie-Weiss behavior for the system above T > 70 K. The best fit of data acquired with 1.0

T (T > 150 K) yields the effective moment of µeff = 2.76 (1) µB. This value is approximately

the same as the effective moment expected for the S = 1, 3d8 electronic configuration of Ni

ions (
√

8 = 2.83). The effective moment determined from data taken at 14.0 T amounts to
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2.66 (1)µB. The fitted values of θp amount to 22.2(1) K and 28.1 (1) K for the data recorded

1.0 T and 14.0 T, respectively.

Figure 2(b) shows the temperature dependence of magnetic susceptibility measured for

the various field applied along the c-axis. In this orientation, the magnetic susceptibility

at higher temperatures is field independent with anomalies at the lower temperatures. The

effective magnetic moment and the paramagnetic Curie temperature are very similar to the

privious orientation (µeff =2.74 (1)µB and θp = 21.3 (1) K, respectively). The best fit to

data taken at 14 T applied along the c-axis is shown in the inset of Fig. 2(b).

For T > 70 K, the similarity between magnetic susceptibilities with field applied along

and perpendicular to the c-axis suggests that the anisotropy in paramagnetic state of NiBr2

is negligible. However, this does not hold true for the state below TN as magnetization

(M–H) curves taken for field applied perpendicular and along the c-axis had shown entirely

different magnetization behaviors, as depicted in Fig. 3(a and b). For the case when applied

magnetic field within the (a–b) basal plane, a clear field-induced transition noticed that

shifts to a lower field upon increasing temperature. At T=3 K, the magnetization step

associated with the transition amounts to about 0.036 µB/Ni. This is in good agreement

with the magnetic susceptibility data.

Now, we discuss the insights of such phase transitions through measurements of the tem-

perature and magnetic field dependence of ac magnetic susceptibility, which is a complex

value and expressed as χac = χ′ − iχ′′. The real component, χ′, is related to the reversible

magnetization process and always in-phase with the oscillating field. However, imaginary

component, χ′′, is related to losses during the irreversible magnetization process. The mea-

surements of ac susceptibilities were carried out for multiple values of applied fields as a

function of temperature (measured with H = 1 mT and f = 99 Hz). To minimize the

demagnetization effects, the dc magnetic fields were applied within the basal plane (a–b).

Fig. 4(a) illustrates the temperature dependence of the ac susceptibilities measured in the

vicinity of both transitions. Experimental results over the field range from 0.1 to 2.0 T show

the emergence of a maxima across both phase transitions. Over the Tm, ac susceptibility

displays a maxima with respect to the temperature; the position of which trending towards

higher side (while the amplitude of ac susceptibility decreases) with reducing the strength

of applied magnetic fields, similar as in Ref. 20. The variation in peak heights and tem-

peratures for various dc magnetic fields shows a monotonic variation with strength of the
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applied dc field.

Figure 4(b) shows the ac susceptibilities as a function of applied magnetic fields for various

constant temperatures ranging across 5-80 K. At T = 80 K, the ac susceptibility exhibits

a line-shaped curve with low amplitude. At T = 25 K; a peak can be seen close to the

upper phase boundary of the antiferromagnet state as also seen in Fig. 2(a). At even lower

temperature near T=20 K, an increase in ac susceptibility peak amplitude is clearly noticed

for applied low fields 0.5 T < H < 2.5 T. This modified ac susceptibility magnitude is also

accompanied by a systematic enhancement in the peak field, which would correspond to

the boundary of incommensurate phase in this region. Repeating the field dependence of ac

susceptibilities at various temperatures across incommensurate phase result a χ(H,T) curve

as illustrated in Figure 4(b). Below Tm, a hysteresis nature of χ(H,T) curves clearly evident,

which acquired for different temperatures, confirming the helix nature of noncollinear spins.

The shift in peak positions as a function magnetic field represent the torque required to

reverse the helical spin upon flipping the polarization of applied magnetic field. The results

reported above indicate the emergence of incommensurate to commensurate phase transition

(as demonstrated further below by neutron scattering), a generic response that occurs only

across the low temperature boundary of these phases. The ac susceptibility peak positions

in (H,T) dimensions over the typical ranges map directly onto the field-induced modulation

in incommensurate phase. It should be noted that at zero field, ac susceptibility diminishes

monotonically over the range of temperatures between 5–20 K.

B. Neutron diffraction on NiBr2 crystal

NiBr2 crystallizes in the CdCl2 structure, which has the rhombohedral space group D5
3d

18–20,22,23. The Ni and Br atoms are situated at the Wyckoff positions 3a(0,0,0) and 6c(0,0,z )

with 3 m and −3 m local symmetries, respectively 22,23. The lattice constants are a = 3.723

Å and c = 18.340 Å. The space group leads to specific extinction conditions, for instance,

the reflections hkil : −h+k+l = 3n and the reflections hki0 : −h+k = 3n.

Figure 5(a) illustrates the (hhl) diffraction pattern recorded at 50 K. As it is evident

that only (110), (003), (006), and (009) Bragg reflections are observed (along with signal

originating from the Al-sample holder/cryostat)22,23. The refinement of observed Bragg

reflections leads to a reasonable agreement with literature data. For TN < T < Tm, new
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Bragg reflections associated with AF order are observed that have been indexed with a

propagation vector qc = (0 0 3/2) (see Fig. 5(b)). The diffraction pattern recorded at 26 K

confirms that (0 0 3/2), (0 0 9/2), and (0 0 15/2) are magnetic satellites corroborating the

antiferromagnetic ordering of Ni spins in (a–b) basal plane 22,23,26,29.

To record the tiny incommensurate components, we have utilized high wavelength neu-

trons with λ = 2.4 Å produced by a pyrolytic graphite monochromator. Graphite filters

were used to remove the λ/2 contamination. The signal to noise ratio were optimized by

varying the slits opening 26,29. The component of propagation vector along the c-axis re-

mains commensurate with a value kz = 3/2. However, an incommensurate component exists

in the (a–b) basal plane, which is oriented along < 110 > direction. For the temeprature

ranging between 4.2-21.8 K the propagation vector has been found to be temperature de-

pendent. The absence of any higher harmonics (Fig. 5(c)) proves that NiBr2 orders with a

helical structure within the (a–b) basal plane in zero field at T = 2 K.

Upon applying an in-plane magnetic field (H ≤ 4 T), the magnetic satellites regain its

shape similar to commensurate antiferromagnetic as shown in Fig. 5(d). This transition of

magnetic satellite peaks are manifested in incommensurate phase. A significant change in

the diffraction patterns reported at T=21.1K, as the qc Bragg reflections split (see Fig. 5(c)).

The estimated propagation is of the qi = (qh qh 3/2), with qh ≈ 0.03. Figure 5(d) shows the

pattern recorded at 2 K and 4 T. As can be seen, an identical diffraction pattern recorded

at 26 K (see Fig. 5(b)). At T= 50 K, one can also notice a detectable short-range ordered

signal. Such field-induced spin reorientation in single crystal of incommensurate NiBr2 is

observed with a magnetic field applied perpendicular to c-axis. For critical field (H ≥ 4 T)

and temperature ranging across 4.2-22 K, a complete spin reorientation has been observed.

This finding will be further examined within the framework of spin-flop coupling in the

upcoming sections.

Figure 6 shows the temperature dependence of the magnetic (0 0 3/2) Bragg reflection

recorded with zero field upon cooling at the top of the reflection. The solid red line represents

the best fit of the experimental data using Eq.(3):

I(T ) = b+ I0(1− T

TN

)2β (3)

where, b denotes the background intensity, I0 represents the intensity at 0 K, and β is the

critical parameter related to dimensionality of the system. The best fit to this empirical
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formula, which is valid in the critical region near the magnetic phase transition, leads to a

good description of the data above 40 K. The magnetic phase transition occurs at TN = 44.5

(6) K with β = 0.30 (1). However, the observation of scattered intensity (see the non-

negligible intensity above the background level in the Fig. 6 highlighted by the dashed line)

above the TN points to the presence of critical scattering in this material. The second-order

transition at Tm takes place at 21.6 (5) K. As it is shown in Fig. 6, the intensity originates

from new Bragg reflections that contribute to the original (0 0 3/2) Bragg reflection.

Figure 7(a) shows diffraction pattern recorded at 2 K with zero magnetic field around

the (0 0 3/2) reciprocal space position, using projection on the ω−υ plane, where ω is the

rotational angle of the sample, and υ is the deviation angle from the scattering plane. As it

is evident, the original magnetic Bragg reflection splits into six reflections indexed by three

propagation vectors q1 = (qh qh 3/2), q2 = (-qh 2qh 3/2), and q3 = (-2qh qh 3/2) (and associated

opposite vectors). Using the UB matrix refined from very few nuclear Bragg reflections and

positions of the maxima, it follows that qh = 0.027 (1) is in agreement with the literature

30,31. The six magnetic reflections can be indexed as (−0.027 −0.027 3/2), (−0.054 0.027

3/2), (−0.027 0.054 3/2), (0.027 0.027 3/2), (0.054 −0.027 3/2) and (0.027 −0.054 3/2).

These propagation vectors are incommensurate with the crystal structure. The projection

of Fig. 7(a) on the rotational axis, ω is shown in Fig. 7(b), suggesting that these reflections

have inhomogeneous intensity distributions.

The existence of six magnetic propagation vectors at low temperatures can results only

in the two diffrent situations. In the first case, a homogeneous state where the Ni magnetic

moments are modulated in the entire sample by all three propagation vectors. In second

case, a spatially disjoint domains that can be populated by each having one propagation

vector at a time. Experimentally the reflection described by the propagation vector q3 is by

about 50 % more intense than the −q2 reflection (see Fig. 7(a)), the first scenario can be

ruled out. This confirms that the magnetic structure consists of volume-separated domains

confirming incommensurate phase with three equivalent directions of wave vectors.

Figure 8(a) shows the temperature dependence of the diffracted intensities projected

on the ω-axis along with projections on the ω−υ plane (Fig. 8(b)) recorded at various

temperatures. As clearly visible that incommensurate reflections collapse at Tm to a single

(0 0 3/2) reflection. The absence of any anomaly around TN suggests that the (0 0 3/2)

reflection just splits into six reflections at lower temperature without any significant change
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in magnetic moment magnitude.

Symmetry analysis for commensurate and incommensurate types of propagation vectors

leads to conclusion that Ni magnetic moments can either oriented along or perpendicular to

the c-axis. However, non-zero intensities at (0 0 3/2) position suggests that the moments

are oriented within the (a–b) basal plane. The best fit to data shown in Fig. 5(b), i.e.,

data taken in zero fields at 25 K, leads to Ni moment magnitude of 2.8 (2) µB. This value

is somewhat larger than the reported in the privious investigations 22,23. It is important

to mention that there could other feasible magnetic structures that also can agree equally

with the experimental data. Fig. 9(a and b) shows the two such solutions with collinear

alignment of Ni moments. The best fit to data taken at 2 K, 0 T as shown in Fig. 5(c) using

six propagation vectors q1 = (−0.027 −0.027 3/2), q2 = (−0.054 0.027 3/2), q3 = (−0.027

0.054 3/2), q4 = (0.027 0.027 3/2), q5 = (0.054 −0.027 3/2), and q6 = (0.027 −0.054 3/2)

leads to Ni magnetic moment of 3.0 (3) µB. The direction of Ni moments has been changing

within the basal plane in an incommensurate manner, making with respect to each other

about α = 9.5◦ as one moves within the plane along a-axis as illustrated in Fig. 9(c). This

solution is in good agreement with the literature 22–24. The population of six magnetic

domains is about 18%:10%:22%:13%:19%:18%.

Now, we would elaborate in more detail about the spin-flop mechanism across the incom-

mensurate phase that is induced in the presence of an external magnetic field (H ≥ 4 T)

applied within the (a–b) plane. In Fig. 10(a), the temperature dependence of the intensity

around (0 0 3/2) position is measured with increasing temperature in a field of 2 T applied

within the (a–b) plane. As the magnitude of applied field increases above the critical field,

only the magnetic reflections indexable with qc = (0 0 3/2) are present. Fig. 10(b) shows the

temperature dependence of the intensity around (0 0 3/2) position measured with increasing

temperature with magnetic field of 5 T applied within the (a–b) plane. The high tempera-

ture magnetic phase is retained as shown in Fig. 10(b) that display the field dependence of

the intensity projected on ω-axis. In the presence of weak anisotropic energy, at a critical

magnetic field this phase transition can be interpreted as the two sub-lattice magnetization

rotates suddenly to a direction perpendicular to easy axis.
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C. Phase diagram

The magnetic phase diagram of NiBr2 near critical temperature Tm(TN) has been drawn

from the measurements of bulk magnetization, susceptibility, and neutron diffraction. A

decrease of the magnetic phase boundary at TN results in a substantial increase of the

satellite q-vector. As shown in the Fig. 11, for an intermediate temperature range in the

(a–b) plane, a commensurate magnetic structure between 45 K and 22 K was found by a

least-squares refinement to be modulated with moments lying in the (a–b) plane. At lower

temperatures and moderate magnetic field in the (a–b) plane, an incommensurate magnetic

structure between 22 K and 4 K was found by a least-squares refinement to be modulated

with moments lying in the (a–b) plane with angle of γ = 9.6° . The inset shows the extended

field range that suggests for the field applied within the (a–b) plane, yet another field-induced

transition around 60 T.

This behavior in χ(H,T ) may be a defining characteristic of such transitions, mainly

reflecting the unusual combination of ferromagnetic and antiferromagnetic interactions in

the NiBr2 system that leads to the complicated influence of applied fields on the changing

spin configurations along the commensurate-incommensurate boundary. As Rastelli et al.

14 predicted, when Jnn and Jnnn are both positive, the lattice is ferromagnetic, but when

either or both are negative, helical or antiferromagnetic. The helical magnetic structure

found in NiBr2 at low temperature results from a very delicate and fortuitous balance of the

various Ji. Elevated temperature forces the system across boundary from incommensurate

to commensurate phase. The interplay between competing interactions lead to amplitude-

modulated magnetic structure having a periodicity that do not match with crystal lattice

32–35.

D. SUMMARY AND CONCLUSIONS

By magnetic measurements and neutron diffraction of NiBr2, we demonstrated a sys-

tematic variation of exchange interactions and helical wave vector as a function of the ap-

plied magnetic field. The changes we noticed in the magnetic properties are dominated by

the variation of anisotropy and exchange interactions. We also demonstrated a magnetic

field-induced phase transition across the incommensurate phase, which entirely transform
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the low-temperature incommensurate phase into the high temperature commensurate spin

structure. This behavior of incommensurate phase is purely governed by spin-flop transi-

tion. On the methodological side, our work demonstrates that combining state-of-the-art

neutron scattering experiments with magnetization measurements, we were enable to ex-

tract definitive microscopic information from the spin triangular system of NiBr2. These

findings accelerate the search for exotic quantum states in helimagnetic systems through the

screening of many related materials having direct technological implications.
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Figure Captions

FIG. 1. (Color online) (a) Schematic representation of the crystal structure of NiBr2. Green and

accent small spheres represent Ni and Br ions in a layered triangular lattice, respectively. a, b

and c are the principal axes of the hexagonal cell where c is the high-symmetry axis. (b) and (c)

depict the collinear antiferromagnetic (AF) (Tm < T < TN) and helical spin (T < Tm) structures,

respectively. Solid arrows indicate spin directions on Ni2+ ions. For simplicity, bromide ions are

not shown.

FIG. 2. (Color online) Temperature dependence of the magnetic susceptibility of NiBr2 measured

with field was applied parallel to (a) (a–b) basal plane and (b) along the c-axis, respectively. The

insets show the temperature dependence of the inverse magnetic susceptibility 1/χ(T ) measured at

14 T in both respective panels.The red solid line is the best fit of 1/χ(T ) to a modified Curie–Weiss

law.

FIG. 3. (Color online)(a) Field dependence of the NiBr2 magnetization applied perpendicular to

the c-axis for various temperatures. The full field range (± 14 T) of M–H curves are shown in

the inset. (b) Field dependence of the NiBr2 magnetization applied along the c-axis measured at

various representative temperatures between 3 K and 60 K.

FIG. 4. (Color online) (a) The temperature dependence of the ac susceptibility, χ(H,T) of NiBr2 in

the vicinity of the lower transition(s), near 50 K, measured in various static applied fields between

0.1 and 2.0 T. Isothermal ac susceptibility χ(H,T) measured over the range 5 K ≤ T ≤ 80 K,

0.0 ≤ H ≤ 3.0T . (b) The hysteresis regime Fig. 4(b) corresponds to the incommensurate phase,

5 K ≤ T ≤ 25 K. For higher temperature 25 K ≤ T ≤ 80K, χ(H,T) shows a straight line

confirming the compensated antiferromagnetic phase area.
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FIG. 5. (Color online) Diffraction patterns of the NiBr2 single crystal in the (hhl) plane at men-

tioned conditions: (a) 50 K, 0 T, (b) 26 K, 0 T, (c) 2 K, 0 T and (d) 2 K, 4 T applied within the

(a–b) basal plan. Insets show the highlighted area around the (0 0 3/2) reciprocal space.

FIG. 6. (Color online) The temperature dependence of the magnetic (0 0 3/2) Bragg reflection

measured upon cooling at the top of the reflection. The solid line through the points just below the

TN is the best fit to the Eq. (4) given in the text. The second-order transition at Tm takes place

at 21.6 (5) K. Just above the TN, a magnetic diffraction signal due to short-range correlations is

visible, which is highlighted with a dashed line.

FIG. 7. (Color online) (a) The diffraction pattern recorded with zero field around the (0 0 3/2)

magnetic reflections in reciprocal space using ω−υ projection. (b) The conventional projection of

diffraction pattern on the rotational ω-axis.

FIG. 8. (Color online) (a and b) The temperature dependence of the diffracted signal around the

magnetic (0 0 3/2) Bragg reflection projected on the ω-axis along with detection as seen on the

2D detector on E4 at various temperatures in zero field.

FIG. 9. (Color online) Schematic representation of AF structure of NiBr2 at 26 K, 0T (a) and 2 K

, 0 T (b). (c) A possible solution that agrees with data taken at 26 K, 0T equally well. Only Ni

atoms are shown. In all cases, 2 × 2 × 1 crystallographic unit cells are shown. The moments in

underlying cell along the c-axis are reverted.

FIG. 10. (Color online) (a) Temperature dependence of the intensity around the (0 0 3/2) measured

with field of 2 T applied within the (a–b) plane. (b) Temperature dependence of the intensity

around the (0 0 3/2) measured with field of 5 T applied within the (a–b) plane.
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FIG. 11. (Color online) Magnetic phase diagram of NiBr2 constructed from magnetic bulk mea-

surements (circles and squares) and neutron diffraction data (stars). In the inset, a crude estimate

of the critical field associated with the TN is represented. The dotted line is a guide for an eye.
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