Crystal structures and magnetic properties of dimorphic Li₃OsO₄

Hai L. Feng,^{1#*} Manfred Reehuis,² Andreas Hoser,² Martin Valldor,^{1,3} Martin Jansen^{1,4*}

¹Max Planck Institute for Chemical Physics of Solids, D-01187 Dresden, Germany
 ²Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin, Germany
 ³Leibniz Institute for Solid State Research (IFW), D-01069 Dresden, Germany
 ⁴Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany

Corresponding authors: hai.feng_nims@hotmail.com (HLF) m.jansen@fkf.mpg.de (MJ)

#Current address: Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA **Abstract:** Rocksalt-type oxides Li₃OsO₄ with disordered and ordered arrangements of Li and Os were synthesized. The disordered phase crystallizes in the ideal rocksalt structure with cubic space group $Fm\overline{3}m$, while the ordered polymorph adopts the monoclinic Na₃BiO₄-type structure (space group P2/c). The analyses of X-ray and neutron diffraction data of monoclinic Li₃OsO₄ indicate that there is a considerable anti-site disorder of Li and Os and that the sample is nonstoichiometric (Li_{3.045(5)}Os_{0.955(5)}O₄). In monoclinic Li₃OsO₄ the OsO₆ octahedra are not isolated from each other but they form edge-sharing zigzag chains. Both cubic and monoclinic Li₃OsO₄ are electrically semiconducting. Cubic Li₃OsO₄ does not show any sign of magnetic order down to 2 K, whereas the $\chi(T)$ data of monoclinic Li₃OsO₄ display an anomaly at 310 K. However, the neutron diffraction study indicated no evidence of long-range magnetic order. The anomaly at 310 K may be caused by short-range antiferromagnetic ordering within the individual Os chains.

Keywords: Li₃OsO₄; Rocksalt; Na₃BiO₄; zigzag chain; antiferromagnetic.

1. Introduction

Rocksalt-type oxides have come into focus as functional materials and have been extensively studied since the 1980s, after the historical finding of LiCoO₂ being a high performance cathode material [1]. Many further lithium oxides with rocksalt structure, such as LiVO₂, LiNiO₂, Li₂MnO₃, Li₂TiO₃, and Li₃NbO₄-based materials, have been reported as possible cathode materials [2–8]. Some rocksalt-type oxides display polymorphism featuring ordered or disordered arrangements of cations [9–11]. Ordered rocksalt type transition metal oxides can form lattices which are of interest for their magnetic states. A spin-liquid magnetic ground state has been proposed for LiNiO₂ and NaTiO₂ [12–14]. Na₃Cu₂SbO₆ was reported to have a singlet ground state [15], while isostructural Na₃Co₂SbO₆ shows long-range antiferromagnetic ordering [16].

Compared with 3*d* transition metals, the 4*d*/5*d* representatives in general show larger spin-orbit couplings, weaker Coulomb repulsion, and larger crystal field splitting energy, which results in particular interplays between charge, spin, and orbital degrees of freedom [17]. For instance, hyper-honeycomb iridate β -Li₂IrO₃ has been considered a platform for Kitaev magnetism [18–20]. Rocksalt-type osmates such as Li₄MgOsO₆ (Os⁶⁺), and Li₅OsO₆ (Os⁷⁺) with long-range magnetic order or magnetic frustration have been reported [21,22]. From a chemistry point of view, osmium is capable of adopting a wide range of oxidation states from –2 to +8. Oxides containing Os⁵⁺ are of particular interest, for example NaOsO₃ shows a metal-insulator transition and metallic LiOsO₃ display a ferroelectric-like structural transition [23–25]. In this work, we targeted a rocksalt-type osmate with Os⁵⁺. We synthesized Li₃OsO₄ with both ordered and disordered arrangement of Li and Os. While the crystal structure of disordered cubic Li₃OsO₄ was reported earlier [26], here the cation ordered monoclinic phase has been obtained for the first time.

2. Experimental

Cubic Li₃OsO₄ was synthesized by solid state reactions of Li₂O, OsO₂, and KClO₄ under the pressure of 2 GPa. Li₂O was prepared by thermal decomposition of LiOH (Alfa Aesar, 98 %) according to Brauer [27]. About 80 mg of Li₂O, OsO₂, and KClO₄ in a molar ratio of 3/2: 1 : 1/8 were well ground together in an Ar-filled glovebox and then sealed in a gold capsule (diameter of 1.5 mm; length of 5.0 mm). The gold crucible was compressed in a piston cylinder press at a pressure of 2 GPa, and was heated at 800 °C for 1 hour. After quenching to ambient temperature the pressure was released.

Monoclinic Li₃OsO₄ was synthesized by solid state reactions of Li₂O, Li₂O₂ (95%, Alfa), and OsO₂ (Os 83%, alfa) in a molar ratio $1 : \frac{1}{2} : 1$. About 400 mg of constituents were mixed together and pressed into a pellet inside an Ar-filled glovebox, and then the pellet was loaded into a corundum crucible inside a silica tube (diameter of 8 mm). The silica tube was then sealed under dynamic vacuum using a H₂/O₂ torch, and heated at 750°C for 48 hours in a tube furnace. Note that the length of the sealed silica ampule is about 150 mm. Along with this procedure, about 3 grams of Li₃OsO₄ were synthesized for neutron powder diffraction.

Both synthesized samples are black. Small pieces of each Li₃OsO₄ samples were cut from the synthesized pellets and finely ground to collect X-ray diffraction (XRD) patterns (Guinier technique, Huber G670 camera, Cu-K α 1 radiation, $\lambda = 1.54056$ Å, germanium monochromator, $10^{\circ} \le 2\theta \le 85^{\circ}$, the step width of 0.005°). The refinement of crystal structures was carried out by Rietveld analysis using the RIETAN-VENUS program [28], and the crystal structure was drawn using the VESTA software [29].

The neutron powder diffraction experiments were carried out on the instruments E2

and E6 at the BER II reactor of the Helmholtz-Zentrum Berlin, where powder patterns were recorded in the ranges of $2\theta = 7.8$ and $83.4 \circ (E2)$ and $2\theta = 5.5$ and $136.5 \circ (E6)$, respectively. Both instruments use a pyrolytic graphite (PG) monochromator to select the neutron wavelength $\lambda = 2.38$ Å (E2) and $\lambda = 2.43$ Å (E6), respectively. The powder sample of monoclinic Li₃OsO₄ was filled in a vanadium container with the dimensions d = 6 mm and h = 40 mm. The temperature dependence of the structural properties was investigated on E6 between 2 and 353 K using an Orange Cryofurnace (AS Scientific Products Ltd., Abingdon, GB). In order to follow in detail the structural changes, we collected 30 powder patterns in this temperature range. Rietveld refinements of the powder diffraction data were carried out with the program *FullProf* [30], using the nuclear scattering lengths b(Li) = -1.90 fm, b(O) = 5.805 fm, b(Os) = 11.0 fm [31]. In order to achieve a detailed magnetic structure analysis, neutron powder diffraction patterns were collected at T = 2 and 298 K on the instrument E2 with high counting statistics (24 h/pattern) using a 15-min collimation to improve the instrumental resolution.

Using pieces of the obtained pellet, the electrical resistivity (ρ) was measured with a DC gauge current of 0.1 mA by the four-point method using a physical properties measurement system (PPMS, Quantum Design, Inc.). Electrical contacts were made with Pt wires and silver glue. The magnetic susceptibilities (χ) of the samples were measured in a SQUID magnetometer (MPMS, Quantum Design), at zero-field cooled (ZFC) and field cooling (FC) conditions in the temperature range of 2 to 380 K under applied magnetic fields of 10 kOe.

3. Results and discussions

Crystal structures. The XRD pattern of the sample synthesized at 2 GPa and 800 °C,

shown in Fig. 1, can be well Rietveld refined assuming the cubic structure with space group $Fm\overline{3}m$, which is consistent with the cubic Li₃OsO₄ reported [26]. This space group has been shown to be adapted by similar oxides like Li₃MoO₄, Li₃NbO₄, and Li₃TaO₄ [10,32,33]. In cubic Li₃OsO₄, the 4*a* site is shared by Li and Os atoms, and the 4*b* site is occupied by O atoms. Besides the main phase Li₃OsO₄, the XRD pattern indicates presence of 1.5% wt of KCl, which stems from KClO₄ used as an oxygen source, and further 0.8% wt of Os metal is noticeable. It is should be noted that calculated weight percent for KCl from starting materials (Li₂O, Os, and KClO₄) is 1.25% wt. The results of the Rietveld refinements for cubic Li₃OsO₄ are summarized in Table 1.

Fig. 1. Rietveld refinement of the powder XRD pattern of cubic Li₃OsO₄. The calculated patterns (red) are compared with the observed ones (black circles). The difference of patterns is shown as a blue curve. Black vertical bars indicate the Bragg reflection positions for the cubic Li₃OsO₄ (top), KCl (middle), and Os (bottom).

The XRD pattern (see Fig. 2a) of the sample synthesized at 750 °C under ambient pressure can be well refined assuming the Na₃BiO₄ type structure (space group P2/c) [34], which was originally determined using single-crystal data and reported to apply for similar oxides Li₃SbO₄, and Li₃RuO₄ [35,36,37]. In this structure, there are four

distinguishable sites for cations, where Li1/Os1 and Li2/Os2 are located at the Wyckoff position 2e (0,*y*,¹/₄) and Li3/Os3 and Li4/Os4 at 2f (¹/₂,*y*,¹/₄), respectively. The refinements indicated that the Li1/Os1 site is dominantly occupied by Os, whereas the other sites are Li dominant sites (see Fig. 3). The Rietveld refinements suggested a small amount of Os deficiency and resulted in a nonstoichiometric composition of Li_{3.056(2)}Os_{0.944(2)}O₄.

Because of the weak X-ray scattering power of Li, it is difficult to accurately determine its position, especially in the presence of a strong scatterer Os. Therefore we complementarily used the neutron-diffraction technique to reveal in detail the structural properties of Li₃OsO₄. Rietveld refinements of the data set collected at the highest temperature of 353 K (see Fig. 2b) converged to a satisfactory residual $R_F = 0.0233$ (defined as $R_F = \sum ||F_{obs}| - |F_{calc}|| / \sum |F_{obs}|$), confirming the Na₃BiO₄-type structure with the space group P2/c. These results are in full agreement with the results of our XRD study. The sample contained 0.66(3) % of Li₂CO₃ which was taken into account in the Rietveld refinement. The Li₂CO₃ may be resulted by the reaction of Li₂O and CO₂ in air. Here the structural parameters of Li₂CO₃, given in Ref. 38, were used. It was found that the site Li1/Os1 in Li₃OsO₄ is mainly occupied with Os, while the other three sites mainly contain Li. Here it has to be mentioned that the standard deviations of the positional parameters y(Li2/Os2) and y(Li3/Os3) are considerably enlarged (Table 1). This can be ascribed to the fact that neutron scattering length of Li is negative [b(Li) = -1.90 fm] and much smaller than [b(Os) = +11.0 fm] which completely compensate each other at a critical concentration of 85% Li. The Li concentration at the Li2/Os2 site lies nearest to this critical value and therefore the sigma of y(Li2/Os2) is the largest.

The refinements also indicate that both oxygen sites 4g(x,y,z), O1 and O2 are fully occupied. The refinement results of the neutron data also indicate a small amount of Os

deficiency and give a nonstoichiometric composition of $Li_{3.045(5)}Os_{0.955(5)}O_4$, which is close to the composition obtained from X-ray analysis. We presume the formation of volatile OsO₄ during the synthesis to be responsible for the Os deficiency. The results of the Rietveld refinements for both, X-ray and neutron diffraction data, are summarized in Table 1. Compared to monoclinic Li₃RuO₄, in which Ru-dominant site is fully occupied by Ru and the Li-dominant sites are partially occupied by Ru with 1.0% - 1.7% [37]. The monoclinic Li_{3.045(5)}Os_{0.955(5)}O₄ show much higher degree of anti-site disorder between Li and Os site: 17.1% of Os-dominant Li1/Os1-site was occupied by Li and Li-dominant Li2/Os2, Li3/Os3, and Li4/Os4-sites partially occupied by Os with 0.6% - 9.8% (see Table 2).

Fig. 2. X-ray (at 299 K) and neutron powder diffraction patterns (at 353 K, instrument E6) of monoclinic Li₃OsO₄. The calculated patterns (red) are compared with the observed ones (black circles). The difference of patterns is shown as a blue curve. Black

vertical bars indicate the Bragg reflection positions for title phase and impurity phase Li_2CO_3 , respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article).

Table 1. Results of the X-ray and neutron diffraction studies of cubic and monoclinic Li_3OsO_4 . Listed are the unit cell and positional parameters as well as the refined occupancies at the Li/Os sites.

Atom	Site	X	у	Z.	осс	$B_{\rm iso}$ (Å ²)		
Cubic Li ₃ OsO ₄ at 299 K (X-ray diffraction).								
Space group $Fm\overline{3}m$: $a = 4.1551(2)$ Å, $V = 71.738(5)$ Å ³ , $Z = 1$, $R_{wp} = 3.58\%$, $R_P = 2.75\%$,								
$\chi^2 = 2.189.$								
Li/Os	4a	0	0	0	0.75/0.25	1.28(2)		
0	4b	0.5	0.5	0.5	1	1.28(2)		
Monoclinic Li ₃ OsO ₄ at 299 K (X-ray diffraction).								
Space group <i>P</i> 2/ <i>c</i> : $a = 5.1154(6)$ Å, $b = 5.8845(7)$ Å, $c = 5.0679(5)$ Å, $\beta = 109.686(3)$ °,								
$V = 143.64(3)$ Å ³ , $Z = 2$, $R_{wp} = 4.67\%$, $R_P = 3.62\%$, $\chi^2 = 4.04$.								
Li1/Os1	2 <i>e</i>	0	0.1316(6)	0.25	0.149(4) /0.851	0.45(2)		
Li2/Os2	2 <i>e</i>	0	0.628(4)	0.25	0.925(1)/0.075	0.45(2)		
Li3/Os3	2f	0.5	0.126(11)	0.75	0.997(1)/0.003	0.45(2)		
Li4/Os4	2f	0.5	0.392(7)	0.25	0.986(1)/0.014	0.45(2)		
01	4g	0.2034(11)	0.1096(16)	0.0058(17)	1	0.45(2)		
O2	4g	0.7760(11)	0.3518(16)	0.0089(16)	1	0.45(2)		
Monoclinic Li ₃ OsO ₄ at 353 K (neutron diffraction).								
Space group <i>P</i> 2/ <i>c</i> : $a = 5.1062(11)$ Å, $b = 5.8903(11)$ Å, $c = 5.0805(10)$ Å, $\beta = 109.75(2)$								
°, $V = 143.82(9)$ Å ³ , $Z = 2$, $R_F = 0.0233$.								
Li1/Os1	2 <i>e</i>	0	0.131(4)	0.25	0.171(5)/0.829	0.86(8)		
Li2/Os2	2e	0	0.65(3)	0.25	0.902(5)/0.098	0.86(8)		
Li3/Os3	2f	0.5	0.121(20)	0.75	0.978(5)/0.022	0.86(8)		
Li4/Os4	2f	0.5	0.440(8)	0.25	0.994(6)/0.006	0.86(8)		
01	4g	0.2249(18)	0.1183(15)	0.0062(26)	1	0.86(8)		
O2	4 <i>g</i>	0.7589(16)	0.3509(17)	0.0055(22)	1	0.86(8)		

Bond length	(Å)	Bond angle	(°)
Li1/Os1–O1	1.954(8) × 2	O1-Li1/Os1-O1	175.6(3)
Li1/Os1-O1	$2.04(2) \times 2$	O1-Li1/Os1-O2	$174.95(17) \times 2$
Li1/Os1-O2	$1.924(19) \times 2$		
Li2/Os2-O1	1.97(13) × 2	O1-Li2/Os2-O2	172.2(3) × 2
Li2/Os2-O2	$2.069(7) \times 2$	O2-Li2/Os2-O2	179.7(3)
Li2/Os2-O2	2.26(14) × 2		
Li3/Os3-O1	2.08(9) × 2	O1-Li3/Os3-O1	179.2(3)
Li3/Os3-O1	2.214(8) × 2	O1-Li3/Os3-O2	$176.7(2) \times 2$
Li3/Os3-O2	2.03(8) × 2		
Li4/Os4-O1	$2.43(4) \times 2$	O1-Li4/Os4-O2	$167.7(3) \times 2$
Li4/Os4-O2	$1.95(4) \times 2$	O2-Li4/Os4-O2	151.9(3)
Li4/Os4-O2	2.162(14) × 2		

Table 2. Selected bond lengths and angels of monoclinic Li_3OsO_4 (neutron diffraction at 353 K).

Fig. 3. Crystal structures of (a) cubic Li₃OsO₄, and (b) monoclinic Li₃OsO₄. The green, brown, and red solid spheres represent Li, Os, and O, respectively.

The crystal structure of cubic Li_3OsO_4 is an ideal rocksalt structure as shown in Fig. 3, where the cation sites are occupied by both, Li and Os. The crystal structure of monoclinic Li_3OsO_4 evolves from the rocksalt structure by cation ordering. The cation ordering gives rise to a monoclinic supercell. The O–Li/Os–O bond angles deviate from the ideal 180° value and range from 151.9 to 179.7° (see Table 2).

Relevant bond lengths as obtained from the 353 K neutron diffraction data are summarized in Table 2. For the Os-dominant octahedra, the average bond length for Li1/Os1–O is 1.97 Å, which is comparable to the values reported for Os⁵⁺ oxides, such as 1.96 Å for Ca₂FeOsO₆ [39], Sr₂ScOsO₆ [40], La₂NaOsO₆ [41], or 1.97 Å for Pr₂NaOsO₆ [41]. This indicates that Os atoms in the monoclinic title compound are basically pentavalent. However, due to the nonstoichiometricity according to the composition Li_{3.045}⁺¹Os_{0.955}^{+5.19}O₄ as obtained from refinement, a small share of Os⁶⁺ might be present in the sample. For the Li-dominant octahedra, the average bond lengths are 2.10, 2.11, and 2.18 Å for Li2/Os2–O, Li3/Os3–O, and Li4/Os4–O, respectively, which are in a reasonable range, 2.10–2.21 Å, for Li⁺¹-centered octahedra [35–37]. However, it should be noted that the Li4/Os4-centered octahdedra shows exceptional high degree of distortion as the bond angles O-Li4/Os4-O are 151.9(3)° and 167.7(3)° deviating from 180°. The corresponding bond angles for the other octahedral sites in Li₃OsO₄ are in the range of 172.2° to 179.7° which are close to 180°. For isostructural compounds Li₃RuO₄ [37] and Li₃SbO₄ [36], the corresponding band angles are larger than 171.88(12)° and 170.19(15)°, respectively.

The crystal structure of monoclinic Li_3OsO_4 , projected along *c* and *a* axis, is shown in Fig. 4, where the Os-dominant sites are drawn as octahedra. The Os-dominant octahedra are not isolated from each other but form edge-sharing zigzag chains. The distance for the nearest Os ions are $d_{Os-Os} = 2.97(2)$ Å inside the chains.

Fig. 4. Projections of the crystal structure of monoclinic Li₃OsO₄, view directions [001] (left) and [100] (right).

In our neutron diffraction study, we have investigated the structural changes of monoclinic Li₃OsO₄ in the temperature range from 2 to 352 K. In Fig. 5 the thermal variation is shown for the reflection groups -202/121 and -321/-123/040/202, where the changes are strongly pronounced. From 352 K down to 130 K the intensities and positions of the reflection groups -202/121 and -321/-123/040/202 show a notable continuous change, while below 130 K the structure develops into a well stabilized low-temperature state down to 2 K. On the other hand, no broadening could be observed for the reflections 100 and 010 (see Fig. 6). Further, the position of 100 remains practically unchanged suggesting that the lattice parameter *a* does not change. The 010 only shows a slight change of its 20 position to higher angles indicating a decrease of the respective lattice parameter *b* from 5.890(1) to 5.850(1) Å. Therefore strong structural changes have to be ascribed to the change of the lattice parameter *c* and the monoclinic angle β . However, it

was not possible to get a successful profile refinement for the data set collected at 2 K. Furthermore from our analysis it was not possible to find a lower symmetric space group. At this point, we only can assume that a strain occurs along a particular direction, and increases continuously from 352 down to about 130 K. The cause of these distortions may be ascribed to the fact that Li⁺ ions may change their positions as a function of the temperature. Below 130 K the structure finally reaches a well stabilized state. Due to the anisotropic peak broadening we only could obtain a satisfactory profile fit of the data set collected at 352 K.

Fig. 5. Temperature dependence of the shifts of particular Bragg reflections of monoclinic Li₃OsO₄, see text.

Fig. 6. Neutron powder patterns of monoclinic Li_3OsO_4 collected at 2 K and 298 K on the instrument E2. The sample contains a minor amount Li_2CO_3 , where the reflection observed at 33.3° is marked with an asterisk. The difference of patterns (black) is shown in the lower part of the pattern.

Electric resistivity. Both the cubic and monoclinic Li₃OsO₄ samples show semiconducting behavior (see Fig. 7): the electrical resistivity (ρ) increases when the temperatures decrease. At 400 K, monoclinic Li₃OsO₄ shows a much higher resistivity of $\rho = 9062 \ \Omega \text{cm}$ than cubic Li₃OsO₄ (7 Ωcm). The ln(ρ) vs. T^{-1} data of monoclinic Li₃OsO₄ show linear behavior and the estimated activation energy amounts to ≈ 0.5 eV. In contrast, for cubic Li₃OsO₄ the ln(ρ) data show a roughly linear behavior on the $T^{-1/4}$ scale, which is in accordance with a three dimensional variable range hopping transport model.

Fig. 7. Temperature dependence of the resistivities of cubic Li₃OsO₄ and monoclinic Li₃OsO₄. The bottom panel shows the corresponding data with T^{-1} and $T^{-1/4}$ scale.

Magnetism. The temperature dependent magnetic susceptibilities (χ) for both, cubic and monoclinic Li₃OsO₄, are shown in Figure 8. Cubic Li₃OsO₄ displays no sign for magnetic order down to 2 K. The $\chi(T)$ data of monoclinic Li₃OsO₄ show an anomaly around 310 K, indicating possible antiferromagnetic transition. The $\chi^{-1}(T)$ data of the cubic Li₃OsO₄ is not linear and do not obey the Curie-Weiss law. Attempts to correct the data by considering a temperature independent term χ_0 have failed. For example, when assuming $\chi_0 = 4.5 \times 10^{-4}$ emu mol⁻¹, a value comparable to those in other 5*d* oxides AOsO₃ [42] and A₂ScIrO₆ [43], the corresponding ($\chi - \chi_0$)⁻¹(*T*) data neither obey the Curie-Weiss Law (see the inset in Fig. 8).

Fig. 8. Temperature dependence of the magnetic susceptibility of cubic Li₃OsO₄ (top) and monoclinic Li₃OsO₄ (bottom). For cubic Li₃OsO₄ data, a 2.0% of mass for KCl and Os was subtracted. The inset shows the corresponding χ^{-1} vs. T, and $(\chi - \chi_0)^{-1}$ vs. T data, where $\chi_0 = 4.5 \times 10^{-4}$ emu mol⁻¹.

To understand the nature of the magnetic anomaly at 310 K, a neutron diffraction study was carried out. However, no magnetic diffraction peak was observed down to 2 K (Fig. 6), indicating that the transition seen in the $\chi(T)$ data of monoclinic Li₃OsO₄ may be not related to a long range magnetic order. One possible interpretation of the data is that the anomaly at 310 K corresponds to on-set of short-range antiferromagnetic ordering within the individual Os-chains. Compared with analogous Li₃RuO₄, which shows 3dimensional magnetic ordering below 40 K [44], the Li₃OsO₄ samples feature a much higher degree of anti-site disorder between Li and Os (as discussed in the crystal structure part) [37]. In a theoretical study by Son et al., the anti-site defects in Li₃RuO₄ were found to damage the inter-chain antiferromagnetic coupling [45]. Thus, the considerable antisite disorder in Li₃OsO₄ may hinder the formation of long-range antiferromagnetic ordering as well. Future studies, such as muon spin relaxation, may be useful to investigate in detail the formation of short- and long-range order in monoclinic Li₃OsO₄.

Conclusions

Rocksalt-type Li₃OsO₄ variants with disordered and ordered arrangements of Li and Os were synthesized. The disordered phase crystallizes in the ideal rocksalt structure with cubic space group $Fm\overline{3}m$. The ordered phase is isostructural to the Na₃BiO₄-type structure (*P*2/*c*). Analyses of X-ray and neutron diffraction data of monoclinic Li₃OsO₄ indicate that there is considerable anti-site disorder of Li and Os and that the sample is nonstoichiometric [Li_{3.045(5)}Os_{0.955(5)}O₄]. In monoclinic Li₃OsO₄, the octahedra predominantly occupied by Os are not isolated from each other but form edge-sharing zigzag chains. Both, cubic Li₃OsO₄ and monoclinic Li₃OsO₄, are electrically semiconducting. Cubic Li₃OsO₄ did not show any sign of magnetic order down to 2 K. Monoclinic Li₃OsO₄ displays an anomaly at 310 K in the $\chi(T)$ data. However, the neutron diffraction study indicated that there is no long-rang magnetic order. The anomaly at 310 K may be caused by short-range antiferromagnetic ordering within the individual Os chains.

Acknowledgment

The work in Dresden was partially supported by the Deutsche Forschungsgemeinschaft through SFB 1143. We thank H. Borrmann in MPI-CPFS for performing X-ray diffraction measurements.

References

- K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, Li_xCoO₂ (0 < x ≤ 1): A new cathode material for batteries of high energy density, Mater. Res. Bull. 15 (1980) 783–789.
- J. B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater. 22 (2010) 257–603.
- L. A. de Picciotto, M. M. Thackeray, W. I. F. David, P. G. Bruce, J. B. Goodenough, Structural characterization of delithiated LiVO₂, Mater. Res. Bull. 19 (1984) 1497–1506.
- A.D. Robertson, P. G. Bruce, Mechanism of electrochemical activity in Li₂MnO₃, Chem. Mater. 15 (2003) 1984–1992.
- M.G. S. R. Thoma, W. I. F. David, J. B. Goodenough, Synthesis and structural characterization of the normal spinel Li[Ni₂]O₄, Mater. Res. Bull. 20 (1985) 1137–1146.
- S. Yamada, M. Fujiwara, M. Kanada, Synthesis and properties of LiNiO₂ as cathode material for secondary batteries, Journal of Power sources 54 (1995) 209–213.
- M. Nakajima, N. Yabuuchi, Lithium-excess cation-disordered rocksalt-type oxide with nanoscale phase segregation: Li_{1.25}Nb_{0.25}V_{0.5}O₂, Chem. Mater. 29 (2017) 6927–6935.
- N. Yabuuchi, M. Nakayama, M. Takeuchi, S. Komaba, Y. Hashimoto, T. Mukai, H. Shiiba, K. Sato, Y. Kobayashi, A. Nakao, M. Yonemura, K. Yamanaka, K. Mitsuhara, T. Ohta, Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for rechargeable lithium batteries. Nat. Commun. 7 (2016) 13814.

- J. C. Anderson, M. Schieber, Ordered-disorder transitions in heat-treated rock-salt lithium ferrite. J. Phys. Chem. Solids 25 (1964) 961–968.
- 10. G. Blasse, On the structure of some compounds $Li_3Me^{5+}O_4$ and some other mixed metal oxides containing lithium. Z. anorg. Allg. Chem. 331 (1964) 44–50.
- S. L. Jibble, I. D. Fawcett, A. C. Hannon, Structure of two disordered molybdates, Li₂Mo(IV)O₃ and Li₄Mo(IV)₃O₈, from total neutron scattering. Acta Cryst. B53 (1997) 604–612.
- 12. K. Hirota, Y. Nakazawa, M. Ishikawa, Magnetic properties of the S = 1/2 antiferromagnetic triangular lattice LiNiO₂, J. Phys.: Condens. Matter 3 (1991) 4721–4730.
- J.N. Reimers, J.R. Dahn, J.E. Greedan, C.V. Stager, G. Liu, I. Davidson, U. von Sacken, Spin glass behavior in the frustrated antiferromagnetic LiNiO₂, J. Solid State Chem. 102 (1993) 542–552.
- 14. S.J. Clarke, A.J. Fowdes, A. Harrison, R.M. Ibberson, M.J. Rossiensky, Synthesis, structure, and magnetic properties of NaTiO₂, Chem. Mater. 10 (1998) 372–384.
- Y. Miura, Y. Yasui, T. Moyoshi, M. Sato, K. Kakurai, Magnetic excitations of spingap system Na₃Cu₂SbO₆ with distorted honeycomb structure, J. Phys. Soc. Jpn. 77 (2008) 104709.
- 16. L. Viciu, Q. Huang, E. Morosan, H.W. Zandbergen, N.I. Greenbaum, T. McQueen, R.J. Cava, Structure and basic magnetic properties of the honeycomb lattice compounds Na₂Co₂TeO₆ and Na₃Co₂SbO₆, J. Solid State Chem. 180 (2007) 1060–1067.
- 17. W. Witczak-Krempa, G. Chen, Y. B. Kim, L. Balents, Correlated quantum phenomena in the strong spin-orbit regime. *Annu. Rev. Condens. Matter Phys.* **2014**, *5*, 57–82.

- 18. T. Takayama, A. Kato, R. Dinnebier, J. Nuss, H. Kono, L.S.I. Veiga, G. Fabbris, D. Haskel, H. Takagi, Hyperhoneycomb Iridate β-Li₂IrO₃ as a platform for kitaev magnetism. Phys. Rev. Lett. 114 (2015) 077202.
- M. Majumder, R. S. Manna, G. Simutis, J. C. Orain, T. Dey, F. Freund, A. Jesche, R. Khasanov, P. K. Biswas, E. Bykova, N. Dubrovinskaia, L. S. Dubrovinsky, R. Yadav, L. Hozoi, S. Nishimoto, A. A. Tsirlin, P. Gegenwart, Breakdown of magnetic order in the pressurized kitaev iridate β-Li₂IrO₃.Phys. Rev. Lett. 120 (2018) 237202.
- 20. A. Ruiz, A. Frano, N. P. Breznay, I. Kimchi, T. Helm, I. Oswald, J. Y. Chan, R. J. Birgeneau, Z. Islam, J. G. Analytis, Correlated states in β-Li₂IrO₃ driven by applied magnetic fields. Nat. Commun. 8 (2017) 961.
- 21. P.-H. T. Nguyen, M. C. Kemei, M. S. Tan, S. Derakhshan, Synthesis, crystal structure and magnetic properties of the two polymorphs of novel S = 1 osmate; Li₄MgOsO₆.
 J. Solid State Chem. 242 (2016) 155–160.
- 22. S. Derakhshan, J. E. Greedan, L. M .D. Cranswick, Long-range antiferromagnetic ordering in the S = 1/2 ordered rocksalt oxide Li₅OsO₆: comparison with the isoelectronic and isostructural spin glass Li₄MgReO₆. Phys. Rev. B 77 (2008) 014408.
- 23. Y. G. Shi, Y. F. Guo, S. Yu, M. Arai, A. A. Belik, A. Sato, K. Yamaura, E. Takayama-Muromachi, H. F. Tian, H. X. Yang, J. Q. Li, T. Varga, J. F. Mitchell, S. Okamoto, Continuous metal-insulator transition of the antiferromagnetic perovskite NaOsO₃. *Phys. Rev. B* 2009, *80*, 161104(R).
- 24. S. Calder, V. O. Garlea, D. F. McMorrow, M. D. Lumsden, M. B. Stone, J. C. Lang, J.-W. Kim, J. A. Schlueter, Y. G. Shi, K. Yamaura, Y. S. Sun, Y. Tsujimoto, A. D. Christianson, Magnetically driven metal-insulator transition in NaOsO₃. *Phys. Rev. Lett.* 2012, 108, 257209.

- 25. Y. Shi, Y. F. Guo, X. Wang, A. J. Princep, D. Khalyavin, P. Manuel, Y. Michiue, A. Sato, K. Tsuda, S. Yu, M. Arai, Y. Shirako, M. Akaogi, N. Wang, K. Yamaura, A. T. Boothroyd, A ferroelectric-like structural transition in a metal. *Nat. Mater.* 2013, *12*, 1024–1027.
- 26. H. Glaser, PhD Thesis, Technische Hochschule, Karlsruhe, 1961
- F. Izumi, K. Momma, Three-dimensional visualization in powder diffraction, Solid State Phenomena 130 (2007) 15–20.
- 29. K. Momma, F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis, J. Appl. Crystallogr. 41 (2008) 653–658.
- 30. J. Rodríguez-Carvajal J, Physica B 192, 55-69 (1993).
- 31. V. F. Sears, in *International Tables for Crystallography* edited by A. J. C. Wilson (Dordrecht/Boston/London: Kluwer Academic Publishers, 1995) Vol. C, p. 383.
- 32. D. Mikhailova, A. Voss, S. Oswald, A. A. Tsirlin, M. Schmidt, A. Senyshyn, J. Eckert,
 H. Ehrenberg, Lithium Insertion into Li₂MoO₄: Reversible Formation of
 (Li₃Mo)O₄ with a Disordered Rock-Salt Structure, Chem. Mater. 27 (2015)
 4485–4492.
- 33. J. C. Grenier, C. Martin, A. Durif, Etude cristallographique des orthoniobates et orthotantalates de lithium, Bull. Soc. fr. minéral. cristallogr. 87 (1964) 316–320.
- 34. B. Schwedes and R. Hoppe, Über Oxobismutate. Zur Kenntnis von Na₃BiO₄ und Na₃SbO₄, Z. anorg. allg. Chem. 393 (1972) 136–148.
- 35. S. Bernes, S. T. Tovar, M. A. Castellanos R, A comparison of the X-ray single-crystal structure of Li₃SbO₄ with the Rietveld refinement. Acta Cryst. C57 (2001) 883–884.

- 36. J. M. S. Skakle, M. A. Castellanos, S. T. Tovar, S. M. Fray, A. R. West, The crystal structure of Li₃SbO₄. J. Mater. Chem. 6 (1996) 1939–1942.
- 37. A. Alexander, P. D. Battle, J. C. Burley, D. J. Gallon, C. P. Grey, S. H. Kim, Structural and magnetic properties of Li₃RuO₄. J. Mater. Chem. 13 (2003) 2612–2616.
- H. Effenberger and J. Zeemann, Verfeinerung der Kristallstruktur des Lithiumkabonates, Li₂CO₃, Z. Kristallogr. 150 (1979) 133–138.
- 39. H. L. Feng, M. Arai, Y. Matsushita, Y. Tsujimoto, Y. Guo, C. I. Sathish, X. Wang, Y.H. Yuan, M. Tanaka, K. Yamaura, High-temperature ferrimagnetism driven by lattice distortion in double perovskite Ca₂FeOsO₆, J. Am. Chem. Soc. 136 (2014) 3326–3329.
- 40. A. Taylor, R. Morrow, D. Singh, S. Calder, M. Lumsden, P. Woodward, A. Christianson, Magnetic order and electronic structure of the 5d³ double perovskite Sr₂ScOsO₆, Phys. Rev. B 91 (2015) 100406.
- 41. W. R. Gemmill, M. D. Smith, R. Prozorov, H.-C. zur Loye, Crystal growth and magnetic properties of lanthanide-containing osmium double perovskite, Ln₂NaOsO₆ (Ln = La, Pr, Nd), Inorg. Chem. 44 (2005) 2639–2646.
- 42. Y. Shi, Y. Guo, Y. Shirako, W. Yi, X. Wang, A. A. Belik, Y. Matsushita, H. L. Feng, Y. Tsujimoto, M. Arai, N. Wang, M. Akaogi, K. Yamaura, High-Pressure Synthesis of 5d Cubic Perovskite BaOsO₃ at 17 GPa: Ferromagnetic Evolution over 3d to 5d Series, J. Am. Chem. Soc. 135 (2013) 16507–16516.
- 43. P. Kayser, B. J. Kennedy, B. Ranjbar, Spin-orbit coupling controlled ground state in the Ir(V) perovskites A₂ScIrO₆ (A = Ba or Sr), Inorg. Chem. 56 (2017) 2204–2209.
- 44. P. Manuel, D. T. Adroja, P.-A. Lindgard, A. D. Hillier, P. D. Battle, W.-J. Son, M.-H. Whangbo, Neutron scattering and μ SR investigations of quasi-one-dimensional magnetism in the spin = 3/2 compound Li₃RuO₄, Phys. Rev. B 84 (2011) 174430.
- 45. W. -J. Son, P. Manuel, D. Adroja, M.-H. Whangbo, Density functional analysis of the

magnetic structure of Li_3RuO_4 : Importance of the Ru-O…O-Ru spin-exchange interactions and substitutional Ru defects at the Li sites. Inorg. Chem. 50 (2011) 9400–9405.