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Kurzzusammenfassung

Die Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung
(BESSY) plant den Bau eines Freie Elektronen Lasers (FEL) [1], der auf dem
Prinzip der High-Gain Harmonic Generation (HGHG) [2] basiert. In einem
HGHG-FEL wird der Lichtentstehungsprozess durch ein externes elektromag-
netisches Feld initiiert, den Seed. Die BESSY Soft X-ray FEL-Anlage wird drei
FEL-Linien beinhalten, von denen jede aus einer Kaskade von mehreren HGHG-
Stufen besteht. Die einzelnen HGHG-Stufen werden aus einem Undulator, einer
magnetischen Verzögerungseinheit und einem weiteren Undulator aufgebaut. Als
Seed-Quelle für die drei FEL-Linien sollen durchstimmbare Laser dienen, deren
Wellenlängen in einem Bereich von 230 nm bis 460 nm variiert werden können.
Durchlaufen das Seed-Feld und der Elektronenstrahl gemeinsam eine HGHG-
Stufe, so wird ein neues Seed-Feld erzeugt, dessen Frequenz ein Vielfaches der
Frequenz des urspünglichen elektromagnetischen Feldes beträgt. Dieser Prozess
wird so lange fortgesetzt, bis die erwünschte Wellenlänge von einigen wenigen
Nanometer erreicht ist. Ein direktes Seeding in, oder nahe am Zielwellenlängen-
bereich wird angestebt. Dadurch lässt sich die Aufheizung des Elektronenstrahls
beim Durchlauf durch die Undulatoren signifikant verringern und die Verstärkung
von Rauscheffekten während der Frequenzumwandlung vermeiden [3]. Dies führt
zu einer besseren Qualität der FEL Ausgangsstrahlung [1].

High-order Harmonic Generation (HHG) in einem Gasmedium ist eine geeig-
nete Methode um solch kurze Wellenlängen im nanometer Bereich zu erzeugen.
Bestrahlt man ein Gas mit einem hochintensiven Laser, so werden einige Atome
ionisiert. Bei der anschließenden Rekombination strahlen die Atome kohärentes
Licht bei einem geradzahligen Vielfachen der Frequenz des erregenden Lasers ab.
Im Rahmen dieser Arbeit wurde ein Programm entwickelt, das die Entstehung der
Lichtspektren einzelner Atome gemäß der Strong-Field Approximation (SFA) [4]
simuliert und die kollektive Evolution des makroskopischen Lichtfelds aller Atome
im Gasmedium mithilfe einer radial-symmetrischen Diffusionsgleichung berech-
net. Das Ergebnis der HHG-Simulation wird als Seed an
Genesis 1.3 [5], einem FEL-Simulationsprogramm, übergeben, um den FEL-
Prozess mit HHG Seed zu untersuchen.





Abstract

The Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung
(BESSY) plans to build a free electron laser (FEL) [1], based on the High-Gain
Harmonic Generation (HGHG) principle [2]. In this concept, the FEL process is
initiated by an external light field, the seed. It is planned to use tunable lasers
as seeding sources with wavelengths ranging from 230 nm to 460 nm. The seed-
ing radiation and the electron beam pass through several HGHG stages, each
consisting of an undulator − magnetic delay − undulator unit, where the light
frequency is upconverted to a higher harmonic. This process will be repeated
until the desired wavelength of a few nanometer is achieved. Seeding directly at
shorter wavelengths close to or in the final output range is desirable as the noise
amplification during the frequency upconversion can be avoided [3]. In addition,
heating effects occuring while the electron beam passes through the cascades are
significantly reduced. This improves the quality of the FEL output radiation [1].

To produce these short wavelengths High-order Harmonic Generation (HHG)
in gases is a promising tool. If a gas is irradiated by a high intensity laser, some
atoms are ionized. Upon recombination, the atoms coherently radiate at odd
integer multiples of the fundamental laser frequency. For this purpose a numerical
simulation based on the Strong-Field Approximation (SFA) [4] was developed,
which calculates the single atom spectra and the propagation of the produced
light through the gas. Using this radiation as the seed, the FEL process is analyzed
via Genesis 1.3 simulations [5].
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1

Introduction

Nanotechnological applications are already state-of-the-art in many sectors
of our daily life. During the last decades, the scales for the applied sciences
have shifted more and more to the nano, pico and even femto ranges. Therefore
the community of scientists is demanding for new light sources providing higher
photon energies to achieve wavelengths in the few nanometer or even ångstrøm
regime together with high brilliance and coherence. The number of envisaged
experiments is large and includes femtochemistry, high resolution imaging, in-
vestigation of molecular and atomic dynamics and many further applications [6].
The Free Electron Laser (FEL) can meet all these requirements. It provides full
transverse coherent light at sufficiently small wavelengths.

In a FEL, an accelerated electron beam is passed through an undulator, whose
alternating magnetic fields forces the electrons on a sinusoidal wiggling trajec-
tory. Therefore the electrons can couple to an external light field or to their own
spontaneously emitted synchrotron radiation. The FEL resonant wavelength is
determined by the energy of the electron beam and the properties of the undu-
lator section. Due to the lack of suitable mirrors, short wavelengths, i.e. in the
nanometer range, can only be achieved by single pass FELs [1]. There are two
basic concepts of single pass FELs: Self Amplified Spontaneous Emission (SASE)
and seeded High Gain Harmonic Generation (HGHG) [2]. Both were proposed
and built all over the world in the past years [1, 7, 8, 9, 10].
The SASE FEL process starts from the spontaneous emission of the electron
beam, which is then amplified due to the interaction between the electrons and
the radiation inside the undulator. This scheme lacks full control of the duration
of the generated X-ray pulse. As it starts from shot noise, the output power and
spectra are stochastic [11].
The second concept, the HGHG FEL, uses a laser beam as a seed copropagating
with the electrons in a first undulator. In this so-called modulator, which is tuned
resonant to the frequency of the fundamental laser, the electrons couple to the
external electro-magnetic field such that an energy modulation occurs. By means
of a dispersive section, this energy modulation is then converted into a spatial
modulation or bunching, which is optimized to a particular harmonic. After that,
the prebunched electron beam is inserted into a second undulator, the radiator.
To reach the few nm to sub-nm scale, cascades of HGHG stages are used, where
each stage seeds the next and is tuned to radiate at a multiple frequency of
the previous stage, so that in each unit the light field is converted to a higher
harmonic order until the desired output is achieved.
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Chapter 1: Introduction

Direct seeding at shorter wavelengths would simplify and shorten the FEL
setup, but due to the lack of suitable conventional lasers, the cascading HGHG
scheme appeared to be the only way to provide high power seeds in the nanometer
range. However, in modern optics High-order Harmonic Generation (HHG) is a
new, rapidly rising field of interest. It offers the possibility of generating a train
of attosecond pulses consisting of a superposition of many odd multiples of the
fundamental laser frequency. The whole pulse train can be supplied directly as
a seed to a HGHG FEL, whose resonant wavelength is tuned to the desired
harmonic. As the FEL process itself is highly frequency selective [12, 13, 14],
only the resonant harmonic will be amplified in the FEL radiator, thus no spectral
filters have to be applied to the HHG signal.

To produce such higher harmonics down to (sub-)nm wavelengths, a very
strong laser field with an intensity in the range of 1014 to 1015 W/cm2 has to
be applied to a gas target. In a semiclassical view, HHG can be described as a
three step process. The laser first bends the coulombic potential of the atomic
core, in which the electron is trapped, thus creating a coulombic wall. This results
in a finite quantum mechanical probability for the electron to escape the atom
by tunneling through the potential wall. When the electron appears in the conti-
nuum, it is immediately accelerated away from the core by the strong electric field
of the laser. After the electric field changes its sign, the electron is strongly driven
back to the atom and radiative recombination of the electron and the ionic core
can occur with a certain probability. The highest frequencies that can be reached
are linked to the depth of the core potential, given by the ionization potential Ip,
and to the strength of the laser described by the ponderomotive potential of a
free electron in a laser field Up. This semiclassical view, as well as a more detailed
quantum mechanical calculation result in an experimentally confirmed, simple
cut-off law for the maximum frequency ωc to be found in the harmonic spectra:
ωc ∼ Ip + 3.17 Up.

Evidently, planning, designing and building large user facilities like seeded
FELs require a deep insight into the participating physical phenomena. Therefore
simulations are mandatory wherever closed analytic expressions are not available.
To allow a numerical investigation of the new approach of high harmonic seeded
FELs, the main goal of this work was to develop a simulation code based on the
Strong Field Approximation (SFA) [4]. The code calculates the high harmonic
spectra produced inside a gas filled cell including effects on the fundamental laser
and the harmonics due to the propagation inside the medium. Using this radiation
as a seed, the FEL process can be further analyzed via a numerical simulation
with the 3D FEL code Genesis 1.3 [5].

The Simple Man Model of HHG is described in section 2.1 of this work. Some
of the major aspects are derived from this simple, semiclassical view. In sec-
tion 2.2, the SFA is introduced. It is a fully quantum mechanical approach on
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HHG which approximately solves the corresponding time-dependent Schrödinger
equation (TDSE) within the tunneling ionization regime of parameters. The evo-
lution of the fundamental laser beam and the generated HHG light inside the
gas medium are discussed in section 2.3. Chapter 3 adresses the simulation of the
HHG process in a gas medium. The program sequence and numerical problems
while implementing the code will be disscussed. In the chapters 4 and 5 results
for selected HHG and seeded FEL simulations will be presented. The main part
of this thesis ends with a conclusion given in chapter 6. In an appendix, closer
views on some mathematical derivations are given, which did not fit into the main
document and additional HHG simulation results are depicted. A bibliography
and the acknowledgement can be found at the very end of this report.
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High Order Harmonic
Generation

High-order harmonic generation occurs when an intense laser field interacts
with an atomic gas target. When rare gas atoms are irradiated by sub-100-fs
pulses with peak powers of the order of 1013 to 1015 W/cm2, the gas medium
responds in a highly non-linear way, generating radiation with higher frequencies
copropagating with the fundamental laser beam. In general, the obtained spectra
consist of the fundamental frequency ω0 plus its odd multiples ωq = qω0, q ∈
(2N + 1) up to the cut-off frequency, where the spectrum ends apruptly. .

In the first section of this chapter a simplified semiclassical model to allow for a
understanding of the major aspects on HHG is presented.
The chapter continues with a quantummechanical approach that describes the
HHG process for a single atom in terms of a time dependent Schrödinger equation
(in atomic units):

i
d

dt
|Ψ(~r, t)〉 =

[
−1

2
∇̂2 + V̂ (x)− E(t) x̂

]
|Ψ(~r, t)〉 . (2.1)

As there is no closed analytical solution and as a full simulation of this equation
would result in a rather time consuming application, an approximate, widely
used, solution of eq.(2.1) is introduced in section 2.2.
The last section of this chapter presents a set of equations to allow for the evolu-
tion of the harmonic light and the laser beam through an irradiated gas medium.

2.1 Simple Man Model

The Simple Man Model represents a semiclassical view on the HHG process which
reproduces some of the major aspects of the experimental results on HHG and
provides a clear understanding. This model is only valid in the so called tunneling
regime, where the fundamental laser frequency ω0 is characterized by:

~ω0 ¿ Ip ¿ Up , (2.2)

with the ionization potential of the atom Ip and the ponderomotive potential
Up = e2E2/(4mω2

0) of an electron in the electric field of the laser.
The Simple Man Model describes high-order harmonic generation as a three-

step process, see figure 2.1.
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Chapter 2: High Order Harmonic Generation

1. An atom is ionized by a strong laser field producing a parent ion and a free
electron with no kinetic energy at a time ti

2. The electron is immediately accelerated by the laser electric field. When
the field changes its sign, the electron is driven back to the atomic core.

3. If the electron and the parent ion collide and recombine at a time tf , the
gained kinetic energy Ekin of the electron plus the binding energy is emitted
via a photon of the frequency ωq = (Ekin + Ip)/~.

(1) (2) (3)

Figure 2.1: The three steps of HHG: (1) The laser superposes with the coulomb
potential of the ionic core, creating a finite potential wall. Thus the atom can ionize
when its outer electron tunnels through this barrier. (2) The electron is accelerated in
the strong electric field. (3) When the ion and the electron recombine, a XUV photon
is emitted.

In the first step, where the atom ionizes, the electron has to tunnel through
a coulombic barrier. The height of this barrier is characterized by the ionization
potential Ip, therefore the condition ~ω0 ¿ Ip implies that the absorption of many
photons is necessary to ionize the atom. Generally, this multi-photon process has
to be described by a quantum-mechanical model, but in the high-energy regime,
a quasistatic approximation of the process is sufficient for most applications.
Note, that this approximation partly neglects the photonic character of the light
field [15]. Several quasistatic models were invented to describe and simulate the
strong field atom ionization via a tunneling process. In these models the atom is
considered as an electron bound in the coulomb potential of the atomic core (ion),
see figure 2.1.1 (green line). The intense laser field is simply described as a slowly

oscillating electric field ~E(t) = ~E0(t) cos(ω0t) whose interaction potential, e ~E~r,
superposes with the coulomb potential of the core and creates a finite tunneling
barrier in the direction of the laser (red line). When the laser field is strong
enough, there is some probability for the electron to escape the atom by tunneling
through the barrier.

A widely used formula for this process was derived by Ammosov, Delone
and Krainov [16]. This so-called ADK rate agrees well with the experimental
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2.1 Simple Man Model

results. Also the assumptions made in this model, a classical electric laser field
and tunneling from a discrete state into the continuum, have been proven by
measurements of structureless photoelectron spectra in this regime [15].

In the ADK theory the instantaneous ionization rate in S.I. units is [15, 16]

w(t) = ωp|Cn∗|2
(

4ωp

ωt

)2n∗−1

exp

(
−4ωp

3ωt

)
, (2.3)

with

ωp =
Ip

~
, ωt =

e|E1(t)|√
2meIp

, n∗ = Z

(
Iph

Ip

)1/2

,

|Cn∗|2 =
22n∗

n∗Γ(n∗ + 1)Γ(n∗)
.

|E1(t)| is the amplitude of the electric field, Z the resulting net charge of the
atom, Ip the ionization potential of the irradiated atom and Iph the ionization
potential of hydrogen. Γ(x) denotes the mathematical Gamma function.

The double logarithmic plot in figure 2.2 shows the dependance of the ion-
ization rate w(t) on the local intensity of the laser field I(t) = ε0c|E(t)|2. The
ADK rate dramatically rises for intensities much higher than 1014W/cm2, thus
the depletion of the ground state should be taken into account at least for the
upper level of the parameter regime of the HHG process.

Figure 2.2: Double logarithmic plot of the instantaneous tunneling ionization rate
w(t) of Neon vs. the laser intensity I(t) = ε0c|E(t)|2.
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Chapter 2: High Order Harmonic Generation

For a slowly varying pulse envelope approximation, one might average the
ionization rate over one optical cycle of the laser field and obtain

wavrg(t) =

(
3ωp

2πωt

)1/2

w(t) . (2.4)

The ionization rate allows for an estimate of the probability of an atom to
have remained in its groundstate

R(t) = exp

[
−

∫ t

−∞
w(t′)dt′

]
. (2.5)

Hence, the free-electron density inside the gas, which has to be equal to the
density of ions is given by

ne(t) = n0 {1−R(t)} , (2.6)

where n0 denotes the neutral atom density and one-electron ionization is consid-
ered only.

After ionization, when the electron appears in the continuum, it will imme-
diately be accelerated in the strong laser field. Neglecting the core attraction,
thus considering a free electron and presuming a linear polarized laser field in
x-direction, the classical electron motion is described by:

m
∂2x

∂t2
= eE(t) . (2.7)

Solving this differential equation within the slowly varying envelope approxima-
tion (i.e. E(t) ≈ E cos(ω0t)) and assuming zero initial velocity leads to a time
dependant electron velocity of

v(t) =
eE

meω0

(sin(ω0t)− sin(ω0ti)) , (2.8)

and the ponderomotive potential of the electron in the laser field as its classical
mean kinetic energy,

Up =
〈

1
2
mev

2
〉

=
e2E2

4meω2
0

. (2.9)

The above equations state, that the velocity v(t) of an electron strongly depen-
dends on the time of ionization ti. A numerical investigation of the velocity of the
electrons at their first return to the parent ion in dependance on the ionization
time was performed to calculate the maximum gained energy available for the
HHG process. The result of this calculation is shown in figure 2.3, where the clas-
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2.1 Simple Man Model

Figure 2.3: Plot of the kinetic energy of an electron at its first return to the nucleus
against the ionization phase ω0ti.

sical kinetic energy of the returning electron is plotted against its ionization phase
ω0ti. The maximum electron energy and the corresponding phase of ionization to
produce the highest photon energies within the HHG process read as

Ekin,max = 3.17 Up at ω0ti = 0.310 . (2.10)

The maximum frequency ωc in a HHG spectrum is linked to the maximum energy
which the electron radiates when recombining, thus to its kinetic energy and to
the binding-energy gained while tunneling. Hence, an estimate of a key parameter
of the HHG process, the position of the cut-off in the spectra is given by the cut-off
law :

~ωc = Ip + 3.17Up. (2.11)

The cut-off law clarifies, that the maximum harmonic frequency achievable from
the HHG process is strongly linked to the ponderomotive potential Up and thus
to the field amplitude and the wavelength of the fundamental laser light.

This implies the following laws [4]:

• The higher the intensity of the laser and thus Up, the higher the cut-off
frequency.

• The larger the wavelength of the fundamental, the higher the cut-off fre-
quency.

• The higher the ionization potential Ip, the higher the cut-off frequency.
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Chapter 2: High Order Harmonic Generation

Note, that not only the cut-off law, but also some other interesting limits on
the HHG process are explained by the Simple Man Model. For instance, HHG
will only occur if the driving laser field is linearly polarized. Ellipticity on the
laser beam causes the returning electron to ’miss’ the parent nucleus. Quantum
mechanically, the overlap of the returning electron wavepacket and the nuclear
wavepacket is reduced. This has been observed in experiments, where the inten-
sity of harmonics has decreased rapidly with increasing ellipticity [15].
Another effect which limits the intensity of the driving laser is the Lorentz force.
At intensities above ∼ 1016 W/cm2 the magnetic component of the laser pulse
which is ignored in weak field optics, can become strong enough to deflect the
returning electron. This will also reduce the overlap between the wavepackets of
the electron and the parent nucleus and hence prevent the generation of higher
harmonics.

HHG is a stochastic process, where the atom has a strong probability to be
ionized every half optical cycle of the fundamental laser, when the electric field
is maximal. Therefore, the periodicity of the HHG process is given by T0/2.
Furthermore, as it will be described in the next section, the electron has to be
considered as a quantum mechanical wave packet, which undergoes a transition
from a bound state to a continuum state at a certain time ti, evolves in the laser
field and finally descends to the bound state again under radiation of the kinetic
energy gained while propagating through the continuum. This quantum wave
packet oscillates with its own frequency, however the total phase, the electron
accommodates and therefore the phase of the occuring XUV radiation is strongly
linked to the time of ionization and to the strength of the fundamental. Thus the
phase of the electronic wave packet at recombination and therefore the phase of
the XUV light are locked to the phase and the amplitude of the fundamental laser
beam. This influences the collective behavior in the spatial domain, since spatial
coherene properties of the irradiating laser are partly transfered to the harmonic
emission. Hence, HHG is a spatial coherent process due to the fact that atoms
irradiated by the same electric field will produce the same XUV light. The total
emitted field in a macroscopic medium is given by a sum over the emmissions from
many atoms. Thus not only the single atom response, but also collective effects as
phase matching or reabsorption of the XUV light determine the net intensity of
the generated harmonics [15]. Phase matching is given, if the radiation generated
by different atoms at different positions in the medium interferes constructively
at the exit of the medium. For a perfect match of phases, this condition reads

4K = 0 (2.12)

or, for approximate phase matching

4K Lmed < π , (2.13)
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2.1 Simple Man Model

where Lmed describes the length and direction of the medium and
K = kq − q k0 denotes the missmatch between the wavevectors of the har-
monic and the fundamental light. The dependance of the harmonic phase on the
intensity of the laser can be written as ϕq = αqI [15], thus an additional wavevec-
tor kI = −∇(αqI) enters the phase missmatch, resulting in a generalized phase
matching condition for HHG with

4K = kq + kI − qk0 . (2.14)

The presence of only odd harmonics in the measured spectra can be explained
by considerations on the periodicity of the process. The coulomb potential of the
atomic core is symmetric, hence tunneling can happen twice an optical cycle for
both signs of the laser electric field, resulting in a periodicity for the harmonic
emission of half an optical cycle, T0/2. But due to the fact, that the harmonic
emission is phase locked to the fundamental laser, the alternating sign of the
laser makes the real periodicity T0 with an antiperiodicty of T0/2. However, the
periodicty in intensity is still T0/2.
The field emitted for a specific harmonic ωq within half a laser cycle may be
written as a wave with frequency ωq = qω0 and complex amplitude A(ωq),

E0(ωq, t) = A(ωq) exp−i(ωqt + ϕq) . (2.15)

Then, the total emmitted field after N half optical cycles, including periodicity,
reads

E(ωq, t) =
N∑

n=1

(−1)nE0(ωq, tn)

=
N∑

n=1

(−1)nA(ωq) exp−i(ωq(t− nT0/2) + ϕq)

= A(ωq) exp−i(ωqt + ϕq)
N∑

n=1

exp +in(ωqT0/2− π)

= E0(ωq, t)
N∑

n=1

exp +in(ωqT0/2− π) , (2.16)

with n indexing bygone half periods T0/2 and tn = t−nT0/2. Thus the total emis-
sion corresponds to the signal generated during one half optical cycle multiplied
by an additional time-dependant amplitude. Reshaping this amplitude results in

N∑
n=1

exp +in(ωqT0/2− π) =
1− eiN(ωqT0/2−π)

e−i(ωqT0/2−π) − 1
. (2.17)
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Chapter 2: High Order Harmonic Generation

This expression shows, that the total amplitude of the harmonic emission for
many optical cycles N will become macroscopic only if the denominator vanishes,
thus

exp [−i(ωqT0/2− π)] = 1 . (2.18)

Hence, one gets

(2n− 1)π =
ωqT0

2
= q

ω0T0

2
= qπ

=⇒ ωq = (2n + 1)ω0 , ∀n ∈ N . (2.19)

Note, that these considerations are valid only, if the depletion of the gound state
is negligible and the amplitude of the laser is approximately constant. Thus, the
constraint in (2.19) on the harmonic spectra does neither hold for very short
pulses nor for such high intensities, that the groundstate is depleted.

2.2 Strong Field Approximation

The Lewenstein Model [4], also called the Strong Field Approximation (SFA), is a
fully quantum mechanical approach which describes the HHG process. The basic
equation of this theory is the time dependent Schrödinger equation (TDSE)

i|Ψ̇(~r, t)〉 =

[
−1

2
∇̂2 + V̂ (x)− E(t) x̂

]
|Ψ(~r, t)〉 , (2.20)

with the coulombic core potential operator V̂ (x) and the dipole operator consist-
ing of the laser electric field E(t) times the space operator x̂. For convenience,
modified atomic units are used, where additionally all energies are expressed in
terms of the energy of a fundamental photon, thus defining ~ = e = me = c =
ε0 = ω0 = 1. With the help of the TDSE one obtains the induced dipole moment

x(t) = 〈Ψ(~r, t)|x̂|Ψ(~r, t)〉 , (2.21)

which is directly linked to the high frequency spectra produced within the HHG
process.

In the following only linearly polarized light is considered, and the model is
restricted to one electron ionization. Additionally this approach is confined to
the case, where Ip À 1 (typically Ip ≈ 5 - 20 laser photons). The ponderomotive
potential Up should be in the range or larger than Ip, but still below the satura-
tion energy Usat, where all the gas atoms ionize during the interaction with the
laser. For these parameters, tunneling theories, for instance, the ADK model [16],
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2.2 Strong Field Approximation

become valid. Because the laser intensity is as high as 1014-1015 W/cm2, one can
also neglect any occurring intermediate resonances.

When the tunneling process emerges, the electron is lifted from the ground-
state |0〉 up to a continuum state |v〉, denoted by its kinetic momentum. Once
it has appeared in the continuum, the interaction of the electron and the laser
is determined by the last term of the the Hamiltonian, E(t)x̂. Assuming, that
continuum to continuum (C-C) transitions do not contribute to the HHG process,
the expectation value of the dipole moment with respect to transitions between
to continuum states reads

〈v|x̂|v′〉 = −i〈v|∇v|v′〉 ≈ −i∇vδ(v − v′) . (2.22)

However, the neglected non-diagonal parts of the C-C transition matrix might be
systematically added up by means of perturbation theory [4].

In eq.(2.20), the second term of the Hamiltonian represents the interaction of
the electron and the atomic core potential V (r). This term is negligible, because
when the electron appears in the continuum it is immediately accelerated by
the intense laser field. At the outer point of the electron trajectory, the kinetic
energy of the electron is relatively low, but for these distances the core attraction
vanishes also. Lastly, when the electron returns to the nucleus, it has gained such
a high momentum, that again atomic potential forces can be neglected.
This can formally be written as

〈v′|V̂ (r)|Ψ〉 ≈ 0 . (2.23)

The above considerations suggest that the following assumptions are valid in
this regime of parameters [4].

(a) The contribution to the evolution of the system of all bound states except
the ground state |0〉 can be neglected.

(b) The depletion of the ground state can be neglected (Up < Usat).

(c) In the continuum, the electron can be treated as a free particle moving in the
electric field with no effect caused by the atomic core potential V (x).

Assumption (b) is only valid, if the laser intensity is not too high (i.e. Up <
Usat), otherwise the depletion of the groundstate has to be taken into account.
Provided, that Up is large enough, (c) does not only hold for short range poten-
tials, but also for long range potentials, as of hydrogen-like atoms. Assumption (c)
implies, that the electron has gained such a large kinetic energy when returning
to the nucleus, that the atomic core attraction is negligible. This is not the case
for lower harmonics of the order of 2q + 1 ≤ Ip/(~ω0). Therefore the Lewenstein
Model is only applicable for higher harmonics with photon energies ~ωq ≥ Ip.
In general, assumptions (a)-(c) are justified, if the so-called Keldysh parameter
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Chapter 2: High Order Harmonic Generation

γ =
√

Ip/2Up is smaller than one [4], thus Ip < 2Up.

In the following a formula, which approximately describes the induced dipole
moment of the atom for the above discussed regime of parameters is derived by
solving the time-dependent Schrödinger equation (2.20).

To solve this differential equation one has to make a conclusive Ansatz. The
considerations (a)-(c) motivate an approach, where the time-dependent wave
function is split into two parts, the bound part represented only by the ground-
state a(t)|0〉 and an integral over all unbound continuum states b(v, t)|v〉,

|Ψ〉 = eiIpt

(
a(t)|0〉+

∫
d3v b(v, t)|v〉

)
. (2.24)

The prefactor in equation (2.24) represents the free oscillations of the ground-
sate with the depth of the potential Ip as bare frequency. Its amplitude is set
to a(t) ≈ 1 , ȧ(t) ≈ 0 in the following, as claimed in assumption (b). Thus, to
solve eq. (2.20) one has to find an expression for the amplitudes of the continuum
states b(v, t). They are defined by a Schrödinger type equation, see also appendix
A,

ḃ(v, t) = −i

(
v2

2
+ Ip

)
b(v, t)− E(t)

∂b(v, t)

∂vx

+ iE(t)dx(v) . (2.25)

In the above equation d(v) = 〈v|x|0〉 denotes the atomic dipole matrix el-
ement for bound-free transitions of electrons, which is later determined by the
shape of the core potential. Because only linear polarized light is considered,
w.l.o.g. ~x can be chosen as the polarization axis, i.e. only the x-component dx(v)
of the dipole matrix element enters the expression for b(v, t). Thus, the whole
information about the atom is reduced to the form of d(v), and its complex
conjugate d∗(v) [4].

The differential Schrödinger type equation (2.25) can be solved exactly [4],
leading to a closed form of b(v, t), using the laser E(t) and the corresponding
vector potential A(t) =

∫ t

−∞ E(t′) dt′:

b(v, t) = i

∫ t

0

dt′ E(t′)dx(v + A(t)−A(t′))

× exp

{
−i

∫ t

t′
dt′′

[
(v + A(t)−A(t′′))2/2 + Ip

]}
. (2.26)

Thus, the expectation of the position of the electron which is equal to the induced
dipole moment, eq.(2.21), can be rewritten as

x(t) =

∫
d3v d∗x(v) b(v, t) + c.c. . (2.27)
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2.2 Strong Field Approximation

In a next step a change of variables to the canonical momentum p = v+A(t)
is performed and the quasiclassical action is introduced.
The quasiclassical action

S(p, t, t′) =

∫ t

t′
dt′′

(
[p−A(t′′)]2

2
+ Ip

)
(2.28)

describes the motion of a freely moving electron in the laser electric field. Hence
an additional phase factor exp [−iS(p, t, t′)] enters the expression for the dipole
moment. Note that eq. (2.28) also takes into account some effects on the phase of
the electronic wave packet due to the depth of the binding core potential (i.e. the
ionization potential Ip). However, as it is just an additional constant, it neglects
other perturbations of the electronic wave function due to the atomic potential
V (x). This means that the canonical momentum p is an observed quantity inbe-
tween the time of ionization t′ and the time of recombination t.
The expression for the induced dipole moment now reads as

x(t) = i

∫ t

0

dt′
∫

d3p dx [p−A(t′)] × E(t′)

× d∗x [p−A(t)] × e−iS(p,t,t′) + c.c. . (2.29)

There is a rather intuitional physical interpretation of equation (2.29) as a
continuous sum of probability amplitudes, which in principal corresponds to
the three steps of HHG described in the Simple Man Model. The first term,
dx [p−A(t′)] × E(t′), represents the probability amplitude for the electron to
perform a transition from the ground state to the continuum at a time t′. During
its flight, the electron is considered as a particle moving freely in the laser electric
field and therefore the wavefunction describing the electron acquires an additional
phase factor exp(−iS(p, t, t′)). The last term in eq.(2.29), the complex-conjugate
of the dipole matrix element d∗x [p−A(t)], can be interpreted as the probability
amplitude for a recombination of the electron and the atomic core to happen at
time t.

An alternative, but slightly unintuitive interpretation of equation (2.29) is a
time-reversed process, where the electron appears in the continuum at a time
t in the future, propagates back to t′ and recombines with the nucleus. This
interpretation allows for the invariance with respect to time included in the basic
equation of this model, the TDSE (2.20).

The integral over the continuum states in eq. (2.29) can be approximately re-
solved via a stationary phase method, see appendix B, thus yielding a numerically
computable expression for the laser induced atomic dipole moment,

x(t) = i

∫ ∞

0

dτ

(
π

ε + iτ/2

)3/2

17



Chapter 2: High Order Harmonic Generation

× dx [pst(t, τ)− Ax(t− τ)] E(t− τ)

× d∗x [pst(t, τ)− Ax(t)]

× exp[−iSst(t, τ)]

+ c.c. . (2.30)

In the above equation, the linear polarization of the laser was taken into
account by writing Ax(t) instead of the whole vector potential A(t) and the time
coordinate has been substituted by the time of flight of the electron: τ = t − t′.
Due to the integration method, the canonical momentum p and the quasiclassical
action S(p, t, t′) have been replaced by their stationary values

pst(t, τ) =
1

τ

∫ t

t−τ

dt′A(t′) , (2.31)

Sst(t, τ) = (Ip − 1
2
p2

st) τ + 1
2

∫ t

t−τ

dt′A2(t′) . (2.32)

The additional prefactor in eq.(2.30), [π/(ε + iτ/2)]3/2, with an infinitesimal
regularization constant ε, has arisen from the integration over all continuum
states. It incorporates the spread of the electronic wave function due to quantum
diffusion during the propagation in the continuum. Because of its proportionality
to τ−3/2, it limits the electrons contributing to the HHG process to those only,
which return after a few laser cycles.

2.3 Propagation in the Medium

In the previous sections the HHG process was contemplated only under the per-
spective of one single atom irradiated by the laser. In order to get a description
which is closer to the real experimental situation, one has to include the propa-
gation of the laser and the generated harmonics through the gas medium.

For convenience, radial symmetry is assumed for the fundamental laser beam
and for the induced harmonic light in the present work, which implies the use
of cylindrical coordinates for the equations describing the evolution of the light
fields.

The source term of the propagation equation is characterized by the single-
atom response. Using the index i ∈ {1, q}, denoting the fundamental, respectively
the harmonic electro-magnetic field, the differential equation describing the evo-
lution reads

∇2Ei(r, z
′, t′)− 1

c2

∂2Ei(r, z
′, t′)

∂t′2
= Gi(r, z

′, t′) , (2.33)

where Gi(r, z
′, t′) is the designated source term, z′ the propagation and r′ the

transverse coordinate. Transforming the above equation to a moving frame (z =
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2.3 Propagation in the Medium

z′ and t = t′−z′/c) and applying the paraxial approximation (i.e. using ∂2E
∂z2 ≈ 0)

leads to

∇2
⊥Ei(r, z, t)− 2

c

∂2Ei(r, z, t)

∂z∂t
= Gi(r, z, t) . (2.34)

This approximation is valid for beam sizes significantly larger than the wavelength
and does not limit the pulse duration [17].
The temporal derivative in equation (2.34) is eliminated by performing a Fourier
transform, yielding a diffusion-type equation

∇2
⊥Ẽi(r, z, ω)− 2iω

c

∂Ẽi(r, z, ω)

∂z
= G̃i(r, z, ω) , (2.35)

where

Ẽi(r, z, ω) = F̂+ [ Ei(r, z, t) ] ,

G̃i(r, z, ω) = F̂+ [ Gi(r, z, t) ] ,

with the Fourier transform operator F̂+ acting on the time coordinate.
To obtain a full set of equations describing the propagation through a gascell,

the source terms Gi(r, z, t) have to be determined. Linear gas dispersion and
depletion of the laser are not considered for the source of the fundamental beam,
since they are negligible in the underlying regime of parameters. However, tem-
poral plasma-induced phase modulations and spatial plasma lensing effects are
taken into account and lead to:

G1(r, z, t) =
ω2

p(r, z, t)

c2
E1(r, z, t)

=⇒ G̃1(r, z, ω) = F̂+

[
ω2

p(r, z, t)

c2
E1(r, z, t)

]
. (2.36)

Where

ω2
p(r, z, t) =

e2ne(r, z, t)

ε0me

(2.37)

is the squared plasma frequency with the electron density ne(r, z, t) calculated
from the ADK instantaneous ionization rate, see eq. (2.6).

Within the harmonic source term, the formation of the harmonics is intro-
duced via the non-linear polarization Pnl . But effects of free electron dispersion
are neglected due to the fact, that the high-order harmonic light consists of fre-
quencies much higher than the plasma frequency.

19



Chapter 2: High Order Harmonic Generation

Hence, one obtains

Gq(r, z, t) = µ0
∂2Pnl(r, z, t)

∂t2

=⇒ G̃q(r, z, ω) = −µ0ω
2P̃nl(r, z, t) , (2.38)

with

Pnl(r, z, t) = [n0 − ne(r, z, t)] R(r, z, t) x(r, z, t)

= n0 R2(r, z, t) x(r, z, t) . (2.39)

Here, the atomic dipole moment x(r, z, t), eq. (2.21), calculated within the SFA
is multiplied by the probability of an atom to have remained in its groundstate
R(r, z, t), eq. (2.5), to allow for the depletion of the ground state, which was
neglected in the Lewenstein Model. This probability also occurs in the expression
for the electron density, eq. 2.6, therefore it enters the harmonic source twice.

Note, that in the above equation no slowly varying envelope approximation
in time was performed, thus taking the whole pulse into account and therefore
giving no limits for the pulse duration due to approximations.

Once the above propagation equations are solved, one can easily obtain the
power spectrum of the harmonics by integrating over the transverse direction at
a certain point of interrest z1.

Iq(ω) ∝
∫ ∞

0

|Ẽq(r, z1, ω)|2 2πrdr. (2.40)
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3

HHG Simulation

The subject of this work was to investigate the HHG radiation as a source for
the BESSY Soft X-ray FEL. For an adequate treatment of the HHG source in
this context, a HHG simulation tool, which uses a three-dimensional propagation
model is mandatory. As such a simulation program was not available, a 3D code
wich is valid within the tunneling regime of parameters was developed. This
chapter deals with the implementation of this simulation code, called Rhyno.

Before implementing the code, basic simulation parameters like the temporal
and the spatial discretization have to be determined and technical questions like
how to keep the fields in storage and how to numerically implement the underlying
mathematical model have to be answered.

The first part of this chapter adresses the main assumptions and the basic
numerical methods of the developed simulation program. The second section deals
with the calculation of the single atom spectra, whereas the numerical solution of
the propagation equations is explaind in section 3. In the last part of this chapter,
an overview of the simulation sequence and its parameters is given.
All computational methods used in this chapter, can be found in textbooks, like
[18].

3.1 Assumptions and Numerical Methods

The simulation is based on a cylindrical symmetric spatial geometry and re-
stricted to laser beams with radial symmetry.
As the program is written in C++, the fields are kept in a special C++-class, which
holds a complex-vector Ej(tj), or Ẽj(ωj) respectively for every 0 ≤ ri ≤ rmax

and provides methods to Fourier transform the fields from time to frequency do-
main and vice versa. Additionally the corresponding ω-, t- and r-axis are saved in
this data structure, thus completely describing the fundamental or the harmonic
light at a certain point along the propagation axis z. During the simulation all
functions and fields are calculated on a t/ω- and a r-grid, thus there is no direct
information on the field values inbetween the grid points. But, as the gridwidth
is chosen rather small compared to the wavelength, they can be linearly inter-
polated, if needed. Note, that the fields are kept in memory only for the actual
point zn = n∆z along the propagation axis, not for any bygone zn′ .

Discrete Fourier Transforms (DFT) are a common method in computational
sciences. They allow for Fourier transformations of signals and functions which
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Chapter 3: HHG Simulation

are not analytically known or integrable. When setting up the number of temporal
grid points a fundamental law for Discrete Fourier Transforms has to be taken
into account, which links the number of points in time and the sampling interval
δt with the resolution and the maximum frequency in the sampled spectra. The
maximum frequency being sampled by a DFT is given by Nyquist’s sampling
theorem [18]

ωc =
π

δt
. (3.1)

If the signal to be transformed contains higher frequencies than ωc, the resulting
spectrum is aliased. This means that contributions from higher frequencies are
folded back into the lower part of the spectrum, thus it is important to prevent
aliasing by choosing the parameters such, that there are no contributions from
frequencies higher than ωc.
Considering the HHG process, it is useful to define the maximum sampling fre-
quency as ωc = Qω0, where Q denotes the number of the highest harmonic to be
sampled. This gives us an estimate for the size of the necessary sampling interval

δt =
π

Qω0

. (3.2)

Equaqtion (3.2) shows, that the higher ωc, the smaller δt and therefore, the
smaller the considered total time interval T = (N−1)δt. However, there is a limit
for the minimum time interval T , as it has to be long enough to cover the whole
laser pulse. On the other hand, due to computation speed, to save and handle
more points in time than necessary is not desirable. Therefore the parameter L is
introduced, which represents the minimum multiple of pulse durations τ , defined
as FWHM, which should fit into the total length of the temporal grid T .

T ≥ Lτ (3.3)

From equations (3.2) and (3.3) one can determine the minimum number of points
in time needed to properly run a simulation with a fundamental laser beam of
pulse duration τ and frequency ω0.

T = (N − 1)δt ≥ Lτ

=⇒ N − 1 ≥ Lτ

δt
=

LQω0τ

π
(3.4)

The code uses L = 3 and Q = 300 as default parameters which give good una-
liased results for most of the HHG simulation cases.
From the maximum frequency and the number of points in time one can also
determine the frequency discretization interval δω. In DFTs the frequency range
spans from −ωc + δω to +ωc, hence

δω =
2ωc − δω

N − 1
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3.2 Single Atom Spectra

=⇒ δω =
2ωc

N
=

2π

Nδt
=

2Qω0

N
. (3.5)

3.2 Single Atom Spectra

The core of this HHG simulation is the calculation of the single atom spectra on
the basis of the Lewenstein approximation eq. (2.30)

x(t) = i

∫ ∞

0

dτ

(
π

ε + iτ/2

)3/2

× d [pst(t, τ)− A(t− τ)] E1(t− τ)

× d∗ [pst(t, τ)− A(t)]

× exp[−iSst(t, τ)]

+ c.c. , (3.6)

where ε is a positive, infinitly small regularization constant [eg. 10−16, see also
comment on eq.(B.15)] and E1(t) the electric field of the linear polarized laser
beam. A(t) denotes the corresponding vector potential, which in atomic units is
defined as

A(t) =

∫ t

−∞
E(t′) dt′ . (3.7)

The dipole matrix element d(p) in eq. (3.6) describes transitions between the
ground state and the continuum. For hydrogen-like atoms, it can be approximated
as [4]

d(p) = i
27/2(2Ip)

5/4

π

p

(p2 + 2Ip)
3 . (3.8)

Sst and pst, given in equations (2.32) and (2.31), are the stationary values of the
quasiclassical action and the canonical momentum

pst(t, τ) =
1

τ

∫ t

t−τ

dt′A(t′) , (3.9)

Sst(t, τ) = (Ip − 1
2
p2

st) τ + 1
2

∫ t

t−τ

dt′A2(t′) . (3.10)
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Chapter 3: HHG Simulation

Within the simulation code, the integrals for x(t), A(t), pst(t, τ) and Sst(t, τ)
are performed using the repeated Simpson rule [18]. Therefore the functions are
piecewise interpolated by parabolas, whose antiderivative is known analytically.
This method is fourth-order accurate in time and reads

I =

∫ t0+Nδt

t0

f(t) dt

=
δt

3


f0 +

(N−2)/2∑
j=1

(
4f2j−1 + 2f2j

)
+ 4fN−1 + fN


 +O(δt4) ,

(3.11)

for an even number of interpolation points N . In case of an odd N , the first
interval between t0 and t1 is interpolated by a straight line according to the
trapezoidal integration rule.

3.3 Propagation

In this section a numerical implementation of the propagation equation (2.35) and
its solution are presented and a stability analysis of the underlying differencing
scheme is discussed.

3.3.1 Solving the Propagation Equation

Equation (2.35) is a diffusion type equation and can be rewritten in the concise
form,

∂u

∂z
= D

[∇2
⊥u− S

]
, (3.12)

where D = c/2iω denotes the diffusion constant, S = S(r, z, ω) is the source
of the field and u = u(r, z, ω) represents the diffusing field itself.
The Laplacian in the above equation only acts on components perpendicular to
the direction of propagation z. This motivates the use of a cylindrical coordinate
system (r, ϕ, z). Note, that the simulation only allows for fully radial symmetric
fields, with vanishing derivatives with respect to ϕ, yielding

∇2
⊥u =

[
∂2

∂r2
+

1

r

∂

∂r

]
u . (3.13)

For numerical simulations, space has to be discretized. The simplest method
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3.3 Propagation

is to split the region of interest into N grid points rj equally separated by

∆r = rj − rj−1 =
Rmax

N − 1
. (3.14)

Now the field and the sources can be represented as independant vectors for any
frequency ωk:

un
j (ωk) := u(rj, zn, ωk)

S n
j (ωk) := S(rj, zn, ωk) , (3.15)

with rj = j∆r and zn = n∆z, respectively. The index n indicates the nth inte-
gration step along the z-axis of width ∆z, whereas ωk denotes the corresponding
frequency slice. Due to the structure of the propagation equation, it can be solved
independantly for any slice without any effect on other slices. In the following
the explicit notation of ωk is omited.

The next step is to find the discretized form of the Laplacian in polar co-
ordinates. Expressions for the first and the second order derivative in the polar
Laplacian can be found using Taylor approximations around the points of inter-
rest, leading to:

(
∂

∂r
u

)

j>0

=
uj+1 − uj−1

2∆r
+ O(∆r2)u′′ ,

(
∂2

∂r2
u

)

j>0

=
uj+1 + uj−1 − 2uj

(∆r)2
+ O(∆r)u′′′ . (3.16)

In polar coordinates, the above equations do not hold for j = 0 , because uj is
only defined for non-negative values of j. The radial symmetry implies uj = u−j,
hence the first order derivative vanishes at j = 0, which is also supported by the
fact that a realistic electric field is only given if the function is steady on axis at
r = 0. (

∂

∂r
u

)

j=0

= 0 ,

(
∂2

∂r2
u

)

j=0

=
2 (u1 − u0)

(∆r)2
. (3.17)

For the Laplacian, the first derivative additionally has to be divided by r, yielding
a singularity on axis. An examination of the limit r → 0 resolves this problem
using l’Hospital’s rule:

lim
r→0

u′(r)
r

l’H
= lim

r→0

u′′(r)
1

= u′′(0) =
2 (u1 − u0)

(∆r)2
. (3.18)
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With these necessary preparations the discretized Laplacian for a polar geometry
can be written as:

(∇2
⊥u

)
j=0

=
4 (u1 − u0)

(∆r)2
,

(∇2
⊥u

)
j>0

=

(
1 + 1

2j

)
uj+1 +

(
1− 1

2j

)
uj−1 − 2uj

(∆r)2
. (3.19)

Now, the propagation equation (3.12) can be rewritten in a discretized form.
Using a Crank-Nicholson (CN) differencing scheme, one obtains,

[
1− 1

2
(D∆z)∇2

⊥
]
un+1 =

[
1 + 1

2
(D∆z)∇2

⊥
]
un − 1

2
(D∆z) S n . (3.20)

This scheme compares the old solution of the partial differential equation un with
the new solution un+1 at a point (n+1/2)∆z along the propagation axis, resulting
in second order accuracy in z [18]. Equation (3.20) can be written as a matrix
equation,

Aun+1 = b(un, S n) = bn , (3.21)

with a tridiagonal, easily invertible matrix A. Standard methods of computation
allow for a solution of the system within the order of O(N) operations [18].

The source terms S1/q
n
j

for the laser and the harmonic field, respectively were

introduced in equations (2.36) and (2.38), in atomic units and according to the
notation in this chapter they read as

S1
n
j (ωk) =

4π

c2
n0 F̂+ [ {1−R(rj, zn, t)} E1(rj, zn, t) ]ω=ωk

,

(3.22)

Sq
n
j (ωk) = −µ0 n0 ω2

k F̂+
[

R2(rj, zn, t) x(rj, zn, t)
]
ω=ωk

.

(3.23)

F̂+ denotes the Fourier transform operator for a transform from time to frequency
domain. All variables in the above equation are in atomic units.

3.3.2 Stabillity Analysis

A very important property of a differencing scheme is its stability. In textbooks,
e.g. [18], unconditional stability is proposed for the CN scheme. Unfortunately,
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3.3 Propagation

this is not completely true for a radial symmetric grid due to the (1/r)-term
in the Laplacian. To study the stability of the differencing scheme given in eq.
(3.20), a von Neumann stability analysis was performed (see appendix C). The
von Neumann analysis is a local method, where the coefficients of the differencing
equations are considered as constant in r- and z-space. In that case the indepen-
dent solutions of the partial differential equation under neglection of the source
term can be written in terms of transverse eigenmodes of the form

vn
j (k) = ξn(k)eikj∆r , (3.24)

for any real wavenumber k in the transverse direction and with ξn(k) denoting
the amplitude of the corresponding eigenmode after the n-th iteration step. In a
next step, these eigenmodes are supplied to the differencing scheme without the
source term, which is then solved for the amplification factor

g(k) =
ξn+1

ξn
. (3.25)

The differencing scheme is stable for those eigenmodes vn
j (k), where

|g(k)|2 ≤ 1 . (3.26)

For the underlying scheme, eq. (3.20), the above constraint leads to a correlation
between the stable wavenumbers k and the radial discretization ∆r:

|g|2 =
(1 + α

j
sin(k∆r))2 + 4(α [cos(k∆r)− 1])2

(1− α
j

sin(k∆r))2 + 4(α [cos(k∆r)− 1])2
≤ 1 ,

=⇒ α sin(k∆r) ≤ −α sin(k∆r) . (3.27)

With α = c∆z/ω(∆r)2 > 0, the final stability criterion reads as:

sin(k∆r) ≤ 0 ,

=⇒ (2n− 1)π ≤ k∆r ≤ 2nπ , n ∈ Z. (3.28)

Like the ’normal’ CN-scheme, the radial symmetric scheme is unconditionally
stable for any stepsize ∆z. However, to obtain reasonable results on a local scale,
∆z should be in the range of the wavelength λ, which defines the characteris-
tic scale of variation of the fields. Applying large stepsizes up to infinity would
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asymptotically result in the equilibrium solution of the system.
But, the stability criterion does limit the gridwidth ∆r. Transferring eq. (3.28)
to terms of wavelengths (k = 2π/λ) and setting n = 1, wavelengths which fullfill
the condition

∆r ≤ λ1 ≤ 2∆r (3.29)

are integrated stable.
Additionally, due to the periodicity of the restriction in (3.28), all odd multiples
of k and therefore all λq = λ1/q , q ∈ (2N0 + 1) are stable. Fortunately, these
are just the wavelengths produced by the HHG process, so that once a value for
∆r is found, which gives a stable scheme for the fundamental laser wavelength,
all produced harmonics are integrated stable as well. Thus only numerical noise
will be amplified in the unstable regions. As a solution for simulations, where
not only the odd harmonics have to be propagated, one might use several radial
grids, so that there is a stable band for every concerned wavelength.
The most intuitive choice of ∆r is such, that the fundamental wavelength λ1 lies
in the middle of the first stable band:

∆r =
2

3
λ1 . (3.30)

3.4 Simulation Sequence

Figure 3.1: Flowchart of the HHG simulation code Rhyno
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3.4 Simulation Sequence

The flowchart in figure 3.1 illustrates the flow of the simulation data through
the individual functions.

At first initialization proceeds, i.e. a parameter file and all given command-
line options are evaluated. Default values are assumed for those parameters which
have been left undefined to prevent an abnormal termination of the program. Ta-
ble 3.4 shows a list of all input parameters, their defaults and a short description.

Next, the fundamental radiation E1(r, z0, t) is initialized as a gaussian beam
in space and time with pulse duration τ (FWHM), waist W0, the position of the
focal spot relative to the beginning of the interaction region zf , carrier frequency
ω0 and an initial peak intensity of the electro-magnetic field I0:

E1(r, z0, t) = E1(r,−zf , t)

= E0
q0

q−zf

exp

[
−iω0

c

(
r2

2q−zf

− zf − ct

)
− 4 ln(2)

(
t

τ

)2
]

,

(3.31)

with

E0 =
√

I0/ε0c , q0 = i
ω0W

2
0

2c
, q−zf

= −zf + q0 .

The harmonic field is initialized with zeros.

After initialization, the main simulation loop starts with the calculation of
the probability for an atom to be unionized, see eq. (2.5),

R(t) = exp

[
−

∫ t

−t0

w(t′)dt′
]

, (3.32)

with the ADK rate w(t′), eq. (2.3). The integration starts at t0 instead of −∞
because only a finite interval contributes to the integral. However, as the funda-
mental laser field was initialized such, that it vanishes at the lower border of the
simulated time window T , equation (3.32) still gives reliable results within these
new borders.

Now, the core of the simulation, the non-linear, laser-induced single atom
dipole moment x(t), eq. (3.6), will be computed. The integral over the time of
flight τ is performed for every point in time tk of the temporal grid. Because of
the prefactor proportional to τ−3/2 in the integrand, contributions to the HHG
process from electrons which have not returned to the nucleus after the first
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Chapter 3: HHG Simulation

Parameter Default value Unit Description

Nsteps 10 - Propagation steps between source evaluations

Nruns 10 - Number of source evaluations between data
output

Npics 1 - Number of data outputs

Noc 3 - Number of optical cycles to take into account
for the calculation of the induced dipole mo-
ment

λ1 740× 10−9 m Wavelength of the fundamental laser beam

τ 30× 10−15 fs Duration of the laser pulse defined as FWHM

W0 25× 10−6 m Waist of the laser at its focal spot

zf 0 m Position of the focal spot relative to the begin-
ning of the interaction region

I0 8× 1014 W/cm2 Peak intensity of the laser in the focal spot

Nr 101 - Number of radial (spatial) grid points

∆r 2λ1/3 m Radial grid width

rmax (Nr − 1) ∗∆r m Max. radius of the spatial grid

∆z 10−6 m Propagation stepsize

Z 0.99560 - Resulting net charge of the ionic core
(default: Neon, value taken from [16])

Ip 21.6 eV Ionization potential (default: Neon)

p0 50 mbar Gas pressure

T 293 K Gas temperature

Q 300 - Max. sampled frequency in units of ω0

L 3 - Min. size of the time window in units of the
pulse duration τ (FWHM)

Nt 16384 - Number of points in ω- and t-space

Imin 1012 W/cm2 Min. peak intensity (threshold) to start the
calculation of a single atom spectrum

Table 3.1: Input parameters of the HHG simulation tool Rhyno
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3.4 Simulation Sequence

few cycles can be neglected. Hence, in order to increase computation speed, the
integral is evaluated only over a few optical cycles of the laser. The number of
cycles the integration takes into account can be adjusted in the simulation code
with the parameter Noc. Its default value is Noc = 3.

Another parameter, which was introduced into the code to shorten calculation
time is the threshold intensity Imin. It defines the minimal peak intensity the
fundamental must have at a certain point rj in order to start the calculation of
the non-linear dipole moment. HHG is a strong-field process and will not occur
for intensities much smaller than 1014 W/cm2. Since a study of the behaviour of
the HHG signal under variation of the threshold intensity was not in the scope
of this work, its default value is set to Imin = 1012 W/cm2, to ensure reliable
results. The dipole moment is set equal to zero for any rj, where the minimum
peak intensity is not achieved.

After calculation of the probability for an atom to be unionized R(t) and the
induced dipole moment x(t) for every rj, the source terms can be constructed.
The fundamental source is built within the time domain and Fourier transformed
as described by eq. (3.22).
To set up the harmonic source, the non-linear polarization Pnl, eq.(2.39), is con-
structed and Fourier transformed. Then, every frequency slice k of the transform
is multiplied by its squared frequency ω2

k and a prefactor in order to obtain the
non-linear source term as defined in (3.23).

Finally the propagation routine is started for both, the laser and the XUV-
light. The propagation equation is solved Nsteps times to evolve the fields to
z′ = z +Nsteps ∆z. The parameter Nsteps defines the number of propagation steps
until the next evaluation of the sources. Due to the fact that the peak amplitude
of the fundamental is slowly varying along the propagation axis, it is not necessary
to recalculate the sources after every propagation step, thus saving an enormous
amount of calculation time. The code uses Nsteps = 10 as default value.

After the fields have been evolved, the fundamental laser field is Fourier trans-
formed back to time domain and the simulation loop is restarted.

The simulation data might be saved each time after propagation. In order to
control the number and time of data outputs, two additional parameters were
introduced into the program, Npics and Nruns. The number of source evaluations
until the data is saved is defined by Nruns, whereas Npics defines the number of
snapshots of the fields which are taken during the simulation. Thus a snapshot is
taken every Nruns ∗Nsteps propagation steps at z = z0 + Nruns Nsteps ∆z. Hence,
the npth picture corresponds to

znp = z0 + np Nruns Npics ∆z (3.33)

and the total length of the simulated gas medium is given by

ztot = z0 + Npics Nruns Nsteps ∆z . (3.34)
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4

HHG Simulation Results

Using the code Rhyno, the characteristics of the HHG radiation were in-
vestigated. The results of these simulations are presented in this chapter. The
first section elaborates on the cut-off rule. A comparision of the estimated cut-off
frequency and the cut-off seen in the simulated spectra is given. In the second
section, the behavior of the HHG spectra under variation of the laser pulse du-
ration is investigated. The dependance of the linewidth on the duration of the
generating pulse is discussed. The position of the laser focus relative to the gas
medium has a crucial influence on the HHG spectra. The reason is the different
phase of the fundamental radiation for a different focal position. To ensure higher
power at a particular harmonic, the phase, i.e. the position of the focus, has to
be optimized. Simulation results for this so-called phase matching are shown in
the last section of the chapter.

4.1 Cut-off Law

One of the main characteristics of the HHG process is the cut-off frequency in
the spectra. According to the Simple Man Model, section 2.1, an approximate
cut-off law is given by eq. (2.11) from which the maximum harmonic number can
be estimated as

qc =
Ip + 3.17 Up

~ω0

. (4.1)

Table 4.1 shows selected peak intensities of the fundamental laser and the corre-
sponding maximum harmonic number (estimated and simulated) for the case of
a Neon gas target (Ip = 21.6 eV ). The HHG spectra are shown in figure 4.1. The
fundamental laser was initialized with a pulse duration of τ = 20 fs and a waist
of W0 = 17.6 µm. The power spectra were calculated in the focus of the laser.

Peak Intensity I0 [W/cm2] Estimated Cut-off Simulated Cut-off
1 ∗ 1014 17.7 21− 25
5 ∗ 1014 37.1 39− 43
1 ∗ 1015 61.3 63− 67

Table 4.1: Maximum harmonic numbers estimated from the cut-off law and simula-
tion for selected peak intensities of the fundamental laser beam and a Neon gas target
(Ip = 21.6 eV ).
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Chapter 4: HHG Simulation Results

As expected from theoretical considerations [4], the classical cut-off law gives
a better approximation for higher intensities. The reason is that the ratio of the
ponderomotive potential Up and the ionization potential Ip increases.

Figure 4.1: Logarithmic scaled power spectra to show the cut-off for peak intensities
of 1014 W/cm2 (top), 5 ∗ 1014 W/cm2 (middle) and 1015 W/cm2 (bottom).
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4.2 Influence of the Laser Pulse Length

The influence of the pulse duration τ on the HHG spectra was investigated for
the present work. The spectra in figures 4.2, 4.3 and 4.4. show simulations for
different pulse durations, i.e. 7 fs, 15 fs, 20 fs and 30 fs. To calculate these spectra,
a laser focus at the beginning of the gas medium and a waist of W0 = 17.6 µm
were assumed.

For a first set of simulations, the peak intensity was kept constant at
7.5 ∗ 1014 W/cm2 for the different pulse durations. Thus the total energies of
the laser pulse E varied with the pulse length (figs. 4.2, 4.3). The total energies
are given in the captions of the figures.
The linewidths of the harmonics are narrower for longer pulses. This is due to
the Fourier limit on the bandwidth of the pulses, which states that shorter pulses
have a broader spectrum, thus a broader band of frequencies stimulates the HHG
process. Another interresting result is that the harmonics are no longer only odd
multiples of the fundamental for very short pulses. This agrees with the theo-
retical prediction (see section 2.1), where the presence of only odd harmonics
is linked to a large number of optical cycles of the fundamental contributing to
HHG.
For the second set of simulations, the total pulse energy was held constant at
E = 0.57 mJ . Therefore the peak intensities changed for different pulse dura-
tions, their values are given in the captions of the figures. The change of intensity
causes the dominant effect of the frequency cut-off as visualized in figure 4.4 for
a 7 fs and a 30 fs pulse. (The other spectra are shown in appendix D.) However,
their linewidths still change as expected.

4.3 Phase Matching

The strong dependance of the HHG spectra on the phase of the fundamental laser
was investigated by varying the position of the focus relative to the beginning of
the gas medium.
Figure 4.5 shows HHG spectra for three different focal positions resulting from
simulations of a laser pulse with the wavelength λ = 740 nm, pulse duration
τ = 7 fs, waist size W0 = 17.6 µm and a peak intensity at the beginning of the
interaction region of 3.95∗1014 W/cm2. For these simulations a HHG setup with a
0.6 mm long, Neon gas filled cell was assumed. The pictures illustrate the strong
dependance of the spectra on the position of the focus and imply, that there is an
optimal value for the position of the focal spot zf to generate a maximum output
for a desired harmonic. As the position of the focus is linked to the phase of the
radiation in the interaction region, this dependancy is called phase-matching, see
eq. (2.13).
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τ = 7 fs, E = 0.43mJ

τ = 15 fs, E = 0.91mJ

Figure 4.2: HHG power spectra for different pulse durations with a constant peak
intensity of the fundamental laser I0 = 7.5 ∗ 1014 W/cm2.
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τ = 20 fs, E = 1.22mJ

τ = 30 fs, E = 1.83mJ

Figure 4.3: HHG power spectra for different pulse durations with a constant peak
intensity of the fundamental laser I0 = 7.5 ∗ 1014 W/cm2.
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τ = 7fs, I0 = 1 ∗ 1015 W/cm2

τ = 30fs, I0 = 2.3 ∗ 1014 W/cm2

Figure 4.4: HHG power spectra for different pulse durations and peak intensities with
a constant total pulse energy of the fundamental laser E = 0.57 mJ .
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Figure 4.5: Macroscopic HHG power spectra for different positions of the laser focus
zf relative to the beginning of a 0.6mm long gas-cell: zf = −1.5mm (top), zf = 0 mm

(middle) and zf = +1.5mm (bottom). The spectra where calculated for a stimulating
laser pulse with a duration of τ = 7 fs and peak intensity of I0 = 3.95 ∗ 1014 W/cm2 at
the beginning of the interaction region.
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5

FEL Simulations with Genesis 1.3

To investigate the use of the HHG radiation as a suitable seed for seeded
FEL projects, two examples have been elaborated: The final amplifier of the
Low-Energy (LE) BESSY-FEL and the second radiator of STARS [1, 19]. These
FELs were proposed to be based on the seeded High Gain Harmonic Generation
(HGHG) principle, where the frequency of the radiation is up-converted in several
HGHG stages. In such a cascaded multi-stage HGHG-FEL, the radiation output
quality suffers with an increasing number of stages due to the accumulation of
sidebands and the loss of electron beam quality [1]. Therefore it is desirable to
shorten the setup, by using a seed close to or even in the output range of the
FEL. The HHG process delivers these short wavelengths in the nanometer range.
Frequency filtering effects during the FEL process make it possible to use the full,
unfiltered HHG radiation as a seed source [12, 13, 14]. Therefore FEL simulations
were performed supplying the simulated HHG spectra from Rhyno as seeding
radiation to the 3D FEL code Genesis 1.3 [5].

The first section shows the simulated HHG radiation, which was supplied as
a seed to the FEL process, whereas the results of the FEL simulation cases are
presented in sections 2 and 3.

5.1 The HHG Seed

The resonant wavelength of the FEL setup was tuned to 23.9 nm for the
Low-Energy FEL and 32.2 nm for STARS corresponding to the 31st or the 23rd
harmonic of the fundamental laser beam , respectively. To enhance the contribu-
tion of these harmonics, HHG radiation originating from a 30fs laser pulse at a
wavelength of 740 nm focused to a point 1.5 mm before a Neon filled gas cell was
assumed. The intensity of the laser was about 3.5 ∗ 1014 W/cm2 at the beginning
of the interaction region, see figure 5.1.

However, with respect to Nyquist’s sampling theorem [18], the simulated spec-
tra have to be filtered in order to match the sampling range of Genesis 1.3. The
spectra where therefore reduced to contain only wavelengths λ ∈ [1

2
λr;

3
2
λr], with

λr denoting the resonant wavelength of the FEL [12]. Note that this sort of fre-
quency filtering is only necessary due to numerical restrictions and is not needed
for a real experiment.

The calculated spectra were transformed to Genesis 1.3 conform input data,
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Chapter 5: FEL Simulations with Genesis 1.3

Figure 5.1: Time resolved (top) and spectral (bottom) power distribution of the unfil-
tered HHG seed.
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5.2 STARS

using its dfl-file option for three-dimensional input of seeding radiation. Because
reliable absolute values for the intensity of the HHG radiation are not obtain-
able from the SFA, the spectra were normalized to be in an output range as
experimentally observed (i.e. a conversion factor of 10−5 was used [20]).

To take into account the loss of intensity during transportation of the seeding
radiation to the FEL device, further seeds with reduced intensity were prepared
for Genesis 1.3 runs.

5.2 STARS

STARS is designed to serve as a demonstrator on seeded HGHG FELs with a two
stage configuration. The radiator of the second stage will be tuneable to directly
lase at wavelengths in the range of 40 nm to 70 nm [19]. However, using the
third harmonic content of the FEL radiation, wavelengths down to 13 nm will be
accessible for experiments [21].

For this study, the second radiator of STARS was tuned to lase at 32.2 nm,
corresponding to the 23rd harmonic of the laser beam. For the simulation a
325 MeV electron beam with a peak current of Ipeak = 500 A and a relative
energy spread of 3 ∗ 10−5 was assumed. The second radiator will consist of 3 ∗
150 periods with a length of λu = 22mm and two 1 m drift sections inbetween,
hence it has a total length of roughly 12 m. Two seeds with different intensities
(figs. 5.2 and 5.3) were prepared for Genesis 1.3 simulations, as mentioned
before.

Figure 5.4 shows how the seeding radiation slips over the electron bunch dur-
ing the passage through the radiator. Due to the FEL interaction the electrons
behind the pulse are prebunched and start to emit radiation at the chosen wave-
length. Figures 5.5 and 5.6 show the FEL output at the end of the radiator for two
different intensities of the HHG seed. As expected, due to the frequency filtering
effect, only the chosen wavelength is amplified inspite of the seeding frequency
comb.

An important feature of the BESSY-FEL, as well as of STARS, is the variable
polarization of the output radiation. This is possible because the final undulator
sections of both FELs are planned as APPLE-III-type helical devices [19]. The
HHG radiation is linearly polarized as discussed in chapter 2. However, a pre-
bunched electron beam will emit polarized radiation according to the magnetic
field configuration of the undulator. Using the first module of the second radiator
to imprint an energy modulation with the desired wavelength and thus to pro-
duce bunching, the next two APPLE-III-type undulator modules can be used to
generate radiation with the selected wavelength and variable polarization. Figure
5.7 shows the results of this simulation for STARS. The temporal and the spectral
distribution after 4.25 m are depicted.

From these results one can conclude, that seeding STARS with HHG radiation
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Figure 5.2: Time resolved (top) and spectral (bottom) power distribution of the high
intensity HHG seed, filtered and prepared for simulating STARS with Genesis 1.3.

allows not only for high power and high purity, but also for variable polarization.
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Figure 5.3: Time resolved (top) and spectral (bottom) power distribution of the low
intensity HHG seed, filtered and prepared for simulating STARS with Genesis 1.3.
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Figure 5.4: Time resolved power distributions to visualize the slippage of the low
intensity seeding radiation over the electron bunch inside the final amplifier of STARS.
The pictures show the distributions at z = 0 m (top), z = 5.5m (middle) and
z = 8.5m (bottom) along the propagation axis.
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Figure 5.5: Time resolved (top) and spectral (bottom) power distribution of the sim-
ulated FEL output for STARS tuned resonant to λ = 32.2 nm and seeded with the low
intensity HHG seed.
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Figure 5.6: Time resolved (top) and spectral (bottom) power distribution of the sim-
ulated FEL output for STARS tuned resonant to λ = 32.2 nm and seeded with the high
intensity HHG seed.
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5.2 STARS

Figure 5.7: Time resolved (top) and spectral (bottom) power distribution of the sim-
ulated FEL output for STARS with the helical-polarizing APPLE-III-type undulator
tuned resonant to λ = 32.2 nm and seeded with the low intensity HHG seed.
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5.3 HHG Seeding of the BESSY Low-Energy

FEL

The final amplifier of the BESSY Low-Energy FEL was proposed to operate at
wavelengths from 10.33 nm to 51.0 nm with an expected output power in the
range of 3.5 GW - 14 GW . The electron beam is assumed to have an energy of
1.02 GeV , a peak current of 1750 A, a normalized emittance of 1.5 π mm mrad
and a relative energy spread of 2 × 10−4. The final amplifier will consist of
two undulator modules. Each module has 69 periods with a period length of
λu = 50 mm. Inbetween the modules, drifts for quadrupoles and diagnostics are
planned. In the present work, the final amplifier of the LE-FEL was tuned reso-
nant to the 31st harmonic of the fundamental laser wavelength, λr = 23.9 nm.

The seed for the LE-FEL case is depicted in figure 5.8. The FEL output for
this HHG seed is shown in figure 5.9. Since the slippage length is significantly
shorter for this case, a full separation of the seed and the FEL radiation can not
occur inside the final amplifier. However, as a strong amplification of the desired
wavelength will take place, the benefits of seeding with HHG radiation is still
visible. The dominant effect is the enhanced purity of the spectrum compared to
the HGHG configuration (see figures 3.10 and 3.11 in [19]).
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Figure 5.8: Time resolved (top) and spectral (bottom) power distribution of the
HHG seed, filtered and prepared for simulating the HHG seeded BESSY LE-FEL with
Genesis 1.3.
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Figure 5.9: Time resolved (top) and spectral (bottom) power distribution of the simu-
lated FEL output for the HHG seeded BESSY LE-FEL tuned resonant to λ = 23.9 nm.
Since the seed and the FEL radiation are not fully seperated, the time resolved distri-
bution is depicted on a logarithmic scale to visualize the amplification of the radiation.
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6

Conclusion

Due to the lack of suitable lasers, a variety of planned seeded FEL facili-
ties, e.g. BESSY Soft X-ray FEL and STARS proposed by BESSY, will use the
cascaded HGHG scheme to provide high power seeds in the nanometer range.
The High-order Harmonic Generation (HHG) process in gas medium offers the
possibility to generate short wavelength seeds with needed high power. To al-
low for a numerical investigation of the new approach of HHG seeded FELs, a
3D simulation program for the HHG process in gases, based on the Strong-Field
Approximation was developed. At first a semiclassical view on the HHG process,
referred to as the Simple Man Model, was given in chapter 2. This model describes
the basic features of the process in a concrete way. However, it is not sufficient
to reproduce the HHG spectra. Therefore the Lewenstein Model was presented
later on.

In chapter 3 the numerical implementation of the simulation code was de-
scribed. This code calculates the dipole moment for a single atom induced in
the HHG process and the formation of the macroscopic harmonic radiation. It
takes into account the evolution of the fundamental laser beam and the generated
XUV light through the gas medium. The program was written in C++ to allow
for a portable application. The internal description of the electromagnetic fields
is based on a fully radial symmetric geometry. The propagation of the fields is
executed via a modified Crank-Nicholson differencing scheme. For this modified
scheme a von Neumann stability analysis was performed to determine a stable
set of grid parameters.

In chapter 4, results of HHG simulations were presented. It was shown that the
code reproduces the main characteristics of HHG, i.e. phase-matching, the cut-off
law and the behavior of the generated spectra under variation of the duration of
the stimulating laser pulse. Hence, the validity of the underlying mathematical
model could be proven. It was shown, that the simulation code is applicable to
generate HHG spectra, which can be used to perform simulations of seeded FEL
schemes.

Exemplarily , the final amplifiers of two HGHG FELs, proposed to be built
at BESSY, STARS and the low energy line of the BESSY-FEL, were simulated
as HHG seeded FELs using the Genesis 1.3 code. It was shown that replacing
the HGHG cascade by a HHG seed not only results in a shortened FEL setup,
but also in a FEL output radiation of higher quality. The resulting spectra were
cleaner, without sidebands as occurring in conventional HGHG FELs.
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Appendix A

Solution of the Schrödinger
Equation

In section 2.2 the TDSE has to be solved within the Lewenstein Model, start-
ing from the equation (2.20),

i|Ψ̇〉 = Ĥ|Ψ〉 , (A.1)

with the Hamiltonian

Ĥ = −1

2
∇̂2 + V̂ (r)− E(t) x̂ (A.2)

and an Ansatz for the wave function, which neglects the depletion of the ground-
state amplitude,

|Ψ〉 = eiIpt

(
|0〉+

∫
d3v b(v, t)|v〉

)
, (A.3)

one can obtain the Schrödinger equation for the continuum state amplitudes
b(v, t) by multiplying eq.(A.1) with a test continuum state 〈w| from the left side.

i〈w|Ψ̇〉 = 〈w|Ĥ|Ψ〉 . (A.4)

With the time derivative of the wave function

i|Ψ̇〉 = −Ip|Ψ〉+ ieiIpt

∫
d3v ḃ(v, t)|v〉 ,

the left-hand-side of equation (A.4) reads as:

i〈w|Ψ̇〉 = −Ip〈w|Ψ〉+ ieiIpt

∫
d3v ḃ(v, t)〈w|v〉

= −eiIptIp〈w|0〉+ eiIpt

∫
d3v

(
−Ipb(v, t) + iḃ(v, t)

)
〈w|v〉

= eiIpt

∫
d3v

(
−Ipb(v, t) + iḃ(v, t)

)
δ(w,v)

= eiIpt
(
−Ipb(w, t) + iḃ(w, t)

)
. (A.5)

The right-hand-side 〈w|Ĥ|Ψ〉 consists of three independent parts which should
be discussed separately.
The first part represents the motion of a free electron:

〈w| − 1
2
∇̂2

r|Ψ〉 = −1
2
eiIpt

{
〈w|∇̂2

r|0〉+

∫
d3v b(v, t)〈w|∇̂2

r|v〉
}
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= −1
2
eiIpt

∫
d3v b(v, t)〈w| − v̂2|v〉

= −1
2
eiIpt

∫
d3v b(v, t)v2〈w|v〉

= +1
2
eiIpt

∫
d3v b(v, t)v2δ(w,v)

= eiIpt w2 b(w, t)

2
(A.6)

The second term of the Hamiltonian represents the interaction of the electron
and the atomic core potential V (r). This term is negligible because when the
electron appears in the continuum it is immediately accelerated by the intense
laser field, at the outer point of the electron trajectory, the energy of the electron
is relatively low, but also the potential nearly vanishes at far distances and lastly,
when the electron returns to the nucleus, it has gained such a high momentum,
that again the core attraction can be neglected.
Thus it follows:

〈w|V̂ (r)|Ψ〉 ≈ 0 . (A.7)

The laser and its interaction with the electron is determined by the last term
of the Hamiltonian. To calculate its multiple with the test state, it is assumed
that continuum to continuum (C-C) transitions do not contribute [4],

〈w|x̂|v〉 ≈ −i∇vδ(v −w) .

Further more, a basic identity for δ-functions is used:

∫
dx f(x)

∂

∂x
δ(x− x0) = −

(
∂f

∂x

)

x=x0

This leads to an expression for the laser-electron interaction part of the Hamil-
tonian,

〈w| − E(t) x̂|Ψ〉 = −E(t) 〈w|x̂|Ψ〉

= −E(t)eiIpt

{
〈w|x̂|0〉+

∫
d3v b(v, t)〈w|x̂|v〉

}

= −E(t)eiIpt

{
dx(w)− i

∫
d3v b(v, t)

∂

∂vx

δ(v −w)

}

= −E(t)eiIpt

{
dx(w) + i

(
∂b(v, t)

∂vx

)

v=w

}
. (A.8a)

In the above equation d(v) = 〈v|x|0〉 denotes the atomic dipole matrix element
for bound-free transitions; dx(v) is the component parallel to the polarization
axis of the laser.

ii



Putting altogether leads to the time dependent Schrödinger equation for the
amplitudes of the continuum states:

ḃ(v, t) = −i

(
v2

2
+ Ip

)
b(v, t)− E(t)

∂b(v, t)

∂vx

+ iE(t)dx(v) (A.9)

The whole information about the atom is thus reduced to the form of d(v) , and
its complex conjugate d∗(v) [4].

This differential Schrödinger type equation (A.9) can be solved exactly [4],
leading to a closed form of b(v, t), using the laser E(t) and the corresponding
vector potential A(t) =

∫ t

−∞ E(t′) dt′.

b(v, t) = i

∫ t

0

dt′ E(t′)dx(v + A(t)−A(t′))

× exp

{
−i

∫ t

t′
dt′′

[
(v + A(t)−A(t′′))2/2 + Ip

]}
(A.10)

The expectation value of the position of the electron, which is equal to the in-
duced dipole moment in atomic units, can be evaluated, so that the final equation
for the dipole moment reads as:

x(t) = 〈Ψ(~r, t)|x̂|Ψ(~r, t)〉 =

∫
d3v d∗x(v) b(v, t) + c.c (A.11)

In a next step a change of variables to the canonical momentum p = v+A(t)
is performed as well as the quasiclassical action S(p, t, t′) is introduced. The
quasiclassical action describes the motion of an electron moving freely in the laser
electric field and therefore gives an additional phase factor exp [−iS(p, t, t′)] to
the dipole moment:

S(p, t, t′) =

∫ t

t′
dt′′

(
[p−A(t′′)]2

2
+ Ip

)
. (A.12)

Note that with writting eq. (A.12), one also takes into account some effects
of the binding atomic potential by introducing the ionization potential Ip into
S(p, t, t′), however as it is just an additional constant to the action, it neglects
perturbations of the electronic wave function during the interaction with the
laser.

Performing the change of variables and introducing S(p, t, t′), the final ex-
pression for the dipole moment becomes:

x(t) = i

∫ t

0

dt′
∫

d3p dx [p−A(t′)] × E(t′)
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Appendix A: Solution of the Schrödinger Equation

× d∗x [p−A(t)] × e−iS(p,t,t′) + c.c. (A.13)

The integral over the continuum states can be approximately solved via a sta-
tionary phase method, see appendix B, thus yielding the numerically computable
expression for the laser induced atomic dipole moment as given in equation (2.30).

x(t) = i

∫ ∞

0

dτ

(
π

ε + iτ/2

)3/2

× E(t− τ)

× dx [pst(t, τ)− Ax(t− τ)]

× d∗x [pst(t, τ)− Ax(t)]

× exp[−iSst(t, τ)]

+ c.c. (A.14)

Here, the linearity of the laser was taken into account by writing Ax(t) instead
of the whole vector potential A(t).
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Appendix B

Stationary Phase Approximation

In mathematics, the stationary phase approximation is a basic principle of
asymptotic analysis, applying to oscillatory integrals of the form

I(λ) =

∫ b

a

dnxf(x)eiλg(x) , (B.1)

where x ∈ Rn and f ∈ C, g ∈ R are smooth enough to be approximated by a
Taylor series near some point c ∈ [a, b].
Suppose that g′(c) = 0, and that g′(x) 6= 0 everywhere else in the considered
interval and moreover that g′′(c) 6= 0 and f(c) 6= 0. Then the integral can be
rewritten as

I(λ) = eiλg(c)

∫ b

a

dnxf(x)eiλ[g(x)−g(c)] . (B.2)

The term eiλ[g(x)−g(c)] is highly oscillatory for λ À 1 and x 6= c, which causes
the integral to decay very rapidly outside a small neighborhood around c. Thus,
neglecting g(x)’s Taylor terms of the third and higher orders, one can approximate
the integral:

I(λ) ≈ eiλg(c)

∫ c+ε

c−ε

dnx f(x)eiλ[g(x)−g(c)]

≈ f(c)eiλg(c)

∫ c+ε

c−ε

dnx ei λ
2
g′′(c)(x−c)2

≈ f(c)eiλg(c)

∫ +∞

−∞
dnx ei λ

2
g′′(c)(x−c)2

= f(c)eiλg(c)

∫ +∞

−∞
dny ei λ

2
g′′(c)y2

.

For a n-dimensional y ∈ Rn, the solution of the last integral is simply given by
the complex gaussian integral, see for example [22]:

I(λ) = f(c)eiλg(c)

n∏
j=1

∫ +∞

−∞
dyj ei λ

2
g′′(c)y2

j

= f(c)eiλg(c)

(
2πi

λg′′(c)

)n/2

= f(c)eiλg(c)

(
2π

λg′′(c)

)n/2

e−inπ/4 . (B.3)
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In the derivation of the induced dipole moment in Lewenstein’s Model an
integral over all continuum states occurs, which can be solved via the stationary
phase approximation.
In principle the dipole moment can be written as

x(t) =

∫ ∞

0

dτ I(t, τ) , (B.4)

with

I(t, τ) =

∫ +∞

−∞
d3p f(p, t, τ)e−iS(p,t,τ) , (B.5)

as the integral to be approximated.
To perform the integration, a few preparations and definitions are helpful:

Sst := S(pst, t, τ) (B.6a)

S ′st :=
d

dp
S(p, t, τ)|p=pst := 0 (B.6b)

S ′′st :=
d2

dp2
S(p, t, τ)|p=pst (B.6c)

fst := f(pst, t, τ) (B.6d)

The quasi-classical action in I(t, τ) is defined as:

S(p, t, τ) =

∫ t

t−τ

dt′
{

(p− A(t′))2

2
+ Ip

}

= Ip

{
τ +

1

2Ip

∫ t

t−τ

dt′(p− A(t′))2

}
(B.7)

In the last representation of (B.7) one can see that the form of S(p, t, τ) corre-
sponds to λg(x) in the definition of the stationary phase approximation (B.1),
thus the approximation is valid if Ip is comparably large. This is the case in the
chosen regime of parameters because by definition HHG is a multi-photon process
and Ip is as big as several photon energies.
In a next step, the stationary points of the action are derived via the condition
∇pS(p, t, τ)|p=pst = 0, given in (B.6b):

0
!
=

d

dp
S(p, t, τ)|p=pst =

∫ t

t−τ

dt′ ((pst − A(t′)) = pstτ −
∫ t

t−τ

dt′A(t′)

=⇒ pst(t, τ) =
1

τ

∫ t

t−τ

dt′A(t′) (B.8)
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=⇒ Sst(t, τ) = (Ip − 1
2
p2

st) τ + 1
2

∫ t

t−τ

dt′A2(t′) (B.9)

This means that the stationary momentum corresponds to the average vector
potential an electron has seen during its flight. Furthermore the definition of the
action in classical mechanics S =

∫ p2

p1
p dx implies,

∇pS(p, t, τ) = x(t)− x(t− τ) , (B.10)

which illustrates, that the stationary points of the quasi-classical action are those
momenta p for which an electron born at time t−τ returns to the same position
at time t. As a matter of fact x(t) and x(t − τ) have to be close to the origin
at the nucleus because it is the only position where a transition from or to the
groundstate is possible.

In order to accomplish the calculation of the considered integral one also needs
to know the second derivative of S(p, t, τ) at it’s stationary points, in fact it turns
out that d2

dp2 S(p, t, τ) is constant for any momentum p:

S ′′(p, t, τ) =
d2

dp2
S(p, t, τ)

=
d2

dp2

∫ τ

0

dt′
{

(p− A(t′))2

2
+ Ip

}

=
d

dp

∫ τ

0

dt′ {(p− A(t′))}

=

∫ τ

0

dt′ = τ .

=⇒ S ′′st = τ . (B.11)

With these preparations, the quasi-classical action can be expanded as a Taylor
series around the stationary momentum pst:

S(p, t, τ) = Sst + 1
2
S ′′st(p− pst)

2 + O(p3) . (B.12)

Then the integral in equation (B.5) can be calculated by using the complex gaus-
sian integration method,

I(t, τ) = e−iSst

∫ +∞

−∞
d3p f(p, t, τ)e−i[S(p,t,τ)−Sst]

≈ e−iSst

∫ +∞

−∞
d3p f(p, t, τ)e−

i
2
S′′st(p−pst)2

≈ e−iSstfst

∫ +∞

−∞
d3y e−i τ

2
y2
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= e−iSst fst

(
π

iτ/2

)3/2

. (B.13)

Thus the dipole moment takes the form:

x(t) =

∫ ∞

0

dτ I(t, τ) =

∫ ∞

0

dτ

(
π

iτ/2

)3/2

fst(t, τ) e−iSst(t,τ) .

(B.14)

Evaluating the last integral requires the introduction of a infinitely small imagi-
nary regularization constant to avoid the singularity at τ = 0 inside. This is done
by a substitution τ → τ − 2iε inside the prefactor, thus yielding an approximate
result for the induced dipole moment of Lewenstein’s Model as introduced in
section 2.2, equation (2.30):

x(t) =

∫ ∞

0

dτ

(
π

ε + iτ/2

)3/2

f(pst, t, τ) e−iS(pst,t,τ) . (B.15)

The validity of the introduction of such a regualrization constant could be proven
by varying ε over the range of several orders of magnitude ( 10−32 upto 10−3 )
without affecting the numerical result of the integral.
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Appendix C

Stability Analysis of the
Propagation Routine

A very important property of a differencing scheme is its stability. In text-
books, e.g. [18], unconditional stability is proposed for the CN scheme. Unfortu-
nately, this is not completely true for a radial symmetric grid due to the (1/r)-
term in the Laplacian, see eq.(3.19). To study the stability of the differencing
scheme given in eq.(3.20), a von Neumann stability analysis was performed. The
von Neumann analysis is a local method, where the coefficients of the differencing
equations are considered as constant in r- and z-space. In that case the indepen-
dent solutions of the underlying partial differential equation under neglection of
the source term can be written in terms of transverse eigenmodes of the form

vn
j (k) = ξn(k)eikj∆r , (C.1)

for any real wavenumber k in the transverse direction and with ξn(k) denoting
the amplitude of the corresponding eigenmode after the n-th iteration step. In
a next step, these eigenmodes are supplied to the differencing scheme, which is
then solved for the amplification factor

g(k) =
ξn+1

ξn
. (C.2)

The differencing scheme is stable for those eigemodes vn
j (k), where

|g(k)|2 ≤ 1 . (C.3)

The underlying differencing scheme, refering to eq.(3.20), reads as

vn+1
j − vn

j = −iα
[
γ+

j (vn+1
j+1 + vn

j+1) + γ−j (vn+1
j−1 + vn

j−1)− 2(vn+1
j + vn

j )
]

, (C.4)

with

γ±j = 1± 1

2j
> 0,∈ R α =

c∆z

ω(∆r)2
> 0,∈ R . (C.5)

Applying the eigenmodes to the differencing scheme, eq.(C.4), results in:

(g − 1)vn
j = −iα

[
γ+

j e+ik∆r + γ−j e−ik∆r − 2
]
(g + 1)vn

j . (C.6)

ix



Appendix C: Stability Analysis of the Propagation Routine

Solving for g yields:

g =
1− iα

[
γ+

j e+ik∆r + γ−j e−ik∆r − 2
]

1 + iα
[
γ+

j e+ik∆r + γ−j e−ik∆r − 2
]

=
1− iα

[
(γ+

j + γ−j ) cos(k∆r) + i(γ+
j − γ−j ) sin(k∆r)− 2

]

1 + iα [. . . ]

=
1 + α

j
sin(k∆r)− 2iα [cos(k∆r)− 1]

1− α
j

sin(k∆r) + 2iα [cos(k∆r)− 1]
. (C.7)

Thus stabiltity is given if:

|g|2 =
(1 + α

j
sin(k∆r))2 + 4(α [cos(k∆r)− 1])2

(1− α
j

sin(k∆r))2 + 4(α [cos(k∆r)− 1])2
≤ 1

=⇒ (1 +
α

j
sin(k∆r))2 ≤ (1− α

j
sin(k∆r))2

2
α

j
sin(k∆r) ≤ −2

α

j
sin(k∆r)

α sin(k∆r) ≤ −α sin(k∆r) . (C.8)

Hence one has to distinguish between two cases, α < 0 and α > 0. For the first
case the final condition reads as:

sin(k∆r) ≥ 0 ,

=⇒ 2nπ ≤ k∆r ≤ (2n + 1)π , n ∈ Z. (C.9)

As α was restricted to be greater than 0 in the present work, the stability criterion
of interest is given by:

sin(k∆r) ≤ 0 ,

=⇒ (2n− 1)π ≤ k∆r ≤ 2nπ , n ∈ Z. (C.10)
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Appendix D

Additional HHG Spectra

Figure D.1: HHG power spectrum for a constant peak intensity of the fundamental
laser I0 = 7.5 ∗ 1014 W/cm2 and a pulse duration of τ = 10 fs, resulting in a total
pulse energy of E = 0.61mJ
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τ = 10fs, I0 = 7 ∗ 1014 W/cm2

τ = 15fs, I0 = 4.67 ∗ 1014 W/cm2

τ = 20fs, I0 = 3.5 ∗ 1014 W/cm2

Figure D.2: HHG power spectra for different pulse durations and peak intensities with
a constant total pulse energy of the fundamental laser E = 0.57 mJ .
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I would like to thank Dr. Jerôme Gaudin for taking time to demonstrate a real
HHG experiment to me and Dr. Philippe Wernet for a fruitful discussion.
I would like to thank the colleagues of BESSY, first of all Dr. Johannes Bahrdt for
giving me my first student job at BESSY and Kathrin Goldammer for first citing
me, Torsten Quast and Rolf Mitzner for helpful tips and all the other BESSY
members for the friendly working environment.
I would also like to thank the colleagues of the Max-Planck Institute for Quantum
Optics in Garching, especially Dr. Vladislav S. Yakovlev for his very precise and
helpful summary on HHG.
I thank Nils Krebs, Simon Hauser and Silke Schwarz for reading the thesis and
Andreas Rodigast for good LATEX tips and discussions on some mathematical
issues.
A very special thank goes to Jessica for always having been there for me.
Above all I thank my parents for their unconditional support at all times and for
their encouragement.

xv



Erklärung
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