

Alexander von Humboldt Stiftung/Foundation

Stabilität von Perowskit-basierten Einzel- und Tandem-Solarzellen unter Protonenbestrahlung

Felix Lang

Kyle Frohna, Alan R. Bowman, Elizabeth M. Tennyson, Krzysztof Galkowski, Samuel D. Stranks **CAM** Giovanni Landi, Heinz-Christoph Neitzert **UNISA** Dibyashree Koushik, Mariadriana Creatore **TU/e** Bernd Rech **HZB** Marko Jost, Eike Köhnen, Steve Albrecht **HZB** Jörg Rappich, Norbert H. Nickel **HZB** Jürgen Bundesmann, Andrea Denker **HZB** Tobias Bertram, Anna Belen Morales-Vilches, Bernd Stannowski, Christian A. Kaufmann **PVComB**

Outline

- 1. Eigenschaften Organisch-Inorganischer Perowskite
- 2. Motivation: Warum sollten wir Perowskit-Solarzellen im Weltraum verwenden ?
- 3. Radiation Hardness of perovskite single junction solar cells
- 4. Perovskite/Silicon Tandem Solar Cells
- 5. Perovskite/CIGS Tandem Solar Cells
- 6. Zusammenfassung

Can be flexíble and líghtweight!

InGAP/GaAs/Ge íst doch perfekt

In-sítu measurements during proton irradiation

More In-sítu measurements during proton irradiation

 $\eta > 29\%^*$, to be commercíalízed soon

Organic-Inorganic Halide Perovskites

CH₃NH₃PbI₃, a solution processable, crystalline semiconductor with a high charge carrier mobility:

	μ		
	[cm ² /Vs]		
c-Si	≈ 10 ³ ^[2]		
solution processable organic semiconductors	10 ⁻⁵ - 10 ⁰ ^[3]		
CH ₃ NH ₃ Pbl ₃	≈ 10 ² ^[4]	[1] M [2] S [3] H	

M. T. Weller, et al., Chem. Commun. 51, 4180–4183, (2015).
 S. M. Sze, J. C. Irvin, Solid. State. Electron. 11, 599, (1968).
 H. Hoppe, et al., J. Mater. Res. 19, 1924, (2004).
 Q. Dong, et al., Science 347, 967, (2015).

Optical Properties of CH₃NH₃Pbl₃

S. De Wolf *et al., J. Phys. Chem. Lett.* 5, 1035, (2014).
 C. Schinke, *et al., AIP Adv.* 5, 67168, (2015).

[3] D. E. Aspnes, A. A. Studna, *Phys. Rev. B.* 27, 985 (1983).
[4] W. Shockley, H. J. Queisser, *J. Appl. Phys.* 32, 510 (1961).

Solution Processing of CH₃NH₃Pbl₃ Thin-Films

[1] N. J. Jeon, et al. Nat. Mater. 13, 897–903, (2014).

CE&N online

Polycrystalline CH₃NH₃Pbl₃ Thin-Films

Perovskite Solar Cells

[2] Kaltenbrunner, M. et al. Nat. Mater. 14, 1032–1039 (2015).

[1] M. Arya, et al, 2016 AIAA Spacecr. Struct. Conf. pp. 141–152.

Perovskite/CIGS based multijunction solar cells:

- Highly efficient
- Flexible
- Several µm thin

- Lightweight
- Stowable
- Deployable

Perovskite based Single and Tandem Photovoltaics

Proton Irradiation

^[1] J. Röhrich et al., Rev. Sci. Instrum. **83**, 02B903 (2012).

[2] Walters et al. (2006). IEEE 4th World Conf. on Photovoltaic Energy (Vol. 2, pp. 1899–1902).

Proton Irradiation

68 MeV to replicate the uniform damage of a true space environment considering polyenergetic & omnidirectional proton irradiation

[2] Walters et al. (2006). IEEE 4th World Conf. on Photovoltaic Energy (Vol. 2, pp. 1899–1902).

Outline

- 1. Eigenschaften Organisch-Inorganischer Perowskite
- 2. Motivation: Warum sollten wir Perowskit-Solarzellen im Weltraum verwenden ?
- 3. Radiation Hardness of perovskite single junction solar cells
- 4. Perovskite/Silicon Tandem Solar Cells
- 5. Perovskite/CIGS Tandem Solar Cells
- 6. Zusammenfassung

Can be flexíble and líghtweight!

InGAP/GaAs/Ge íst doch perfekt

In-sítu measurements during proton irradiation

More In-sítu measurements during proton irradiation

 $\eta > 29\%^*$, to be commercíalízed soon

In-situ measurements of the degradation of J_{rad}

In-situ Characterization of PV Performance

A < 10^3 Bq \rightarrow Characterization @ AM1.5

20	20 MeV: 68 MeV:		V:	
•	$\eta \rightarrow$	•	η	И
•	$J_{sc} \rightarrow$	•	J _{sc}	И
•	$V_{oc} \rightarrow$	•	V _{oc}	И
•	$FF \rightarrow$	•	FF	N

- Degradation @
 68 MeV >> 20 MeV
- SRIM simulations

 # vacancies & interstitials
 68 MeV << 20 MeV

After 3 weeks, $A < 10^4 Bq$

- AM0 = 135 mW/cm²
 - $\eta_{MPP}^{as\,prep}$ = 18.8 %
 - $\eta_{MPP}^{irr.}$ = 17.8 %

Lang, F., et al., Energy Environ. Sci. 2019, 12, 1634.

Dark J-V characteristics

Increase in rectification ???

→ reduced recombination after irradiation ?

Photoluminescence Decay

→ Suggests reduced recombination after irradiation with 68 MeV

Spectral Photoluminescence

→ Suggests <u>increased</u> recombination after irradiation with 68 MeV

V_{oc} decay

→ Suggests reduced Shockley-Read Hall recombination after irradiation

Apparent lifetime due to trapping and detrapping ??

$$\frac{dn_{e}^{i}}{dt} = -\underbrace{\gamma_{Auger} \cdot n_{e}^{i}^{2} \cdot n_{h}^{i}}_{Auger} - \underbrace{k_{rad} \cdot n_{e}^{i} \cdot n_{h}^{i}}_{radiative} - \underbrace{k_{trap} \cdot n_{e}^{i} \cdot N_{trap} \cdot \left(1 - \frac{n_{trap}^{i}}{N_{trap}}\right)}_{trapping} + \underbrace{k_{detrap} \cdot n_{trap}^{i} \cdot N_{trap}}_{detrapping}$$

$$\frac{dn_{hh}^{i}}{dt} = -\underbrace{\gamma_{Auger} \cdot n_{e}^{i} \cdot n_{h}^{i}}_{Auger} - \underbrace{k_{rad} \cdot n_{e}^{i} \cdot n_{h}^{i}}_{radiative} - \underbrace{k_{trap} \cdot n_{trap}^{i} \cdot N_{trap}}_{detrapping} - \underbrace{k_{detrap} \cdot n_{trap}^{i} \cdot N_{trap}}_{detrapping}$$

$$= \underbrace{k_{trap} \cdot n_{e}^{i} \cdot N_{trap} \cdot \left(1 - \frac{n_{trap}^{i}}{N_{trap}}\right)}_{trapping} - \underbrace{k_{detrap} \cdot n_{trap}^{i} \cdot N_{trap}}_{detrapping}$$

$$= \underbrace{k_{trap} \cdot n_{e}^{i} \cdot N_{trap} \cdot \left(1 - \frac{n_{trap}^{i}}{N_{trap}}\right)}_{trapping} - \underbrace{k_{detrap} \cdot n_{trap}^{i} \cdot N_{trap}}_{detrapping}$$

Trapping & Detrapping ?

Minority carrier trapping & detrapping can explain the observations \rightarrow Is it true ?

Unpublished Data please email fl396@cam.ac.uk

Perovskite/CIGS based multijunction solar cells:

- Highly efficient
- Flexible
- Several µm thin

- Lightweight
- Stowable
- Deployable

Unpublished Data please email fl396@cam.ac.uk

Acknowledgement

Financial Alexander von Humboldt Support Stiftung/Foundation

Thank you for your attention

Helmholtz Innovation Lab

