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Classical X-rays and Synchrotron Radiation

ADRIAN OPONOWICZ, MARIANNA MARCISZKO-WIACKOWSKA, ANDRZEJ
BACZMANSKI, MANUELA KLAUS, CHRISTOPH GENZEL, SEBASTIAN WRONSKI,
KAMILA KOLLBEK, and MIROSLAW WROBEL

In this work, the stress gradient in mechanically polished tungsten sample was studied using
X-ray diffraction methods. To determine in-depth stress evolution in the very shallow subsurface
region (up to 10 um), special methods based on reflection geometry were applied. The subsurface
stresses (depth up to 1 um) were measured using the multiple-reflection grazing incidence X-ray
diffraction method with classical characteristic X-rays, while the deeper volumes (depth up to
10 um) were investigated using energy-dispersive diffraction with white high energy synchrotron
beam. Both complementary methods allowed for determining in-depth stress profile and the
evolution of stress-free lattice parameter. It was confirmed that the crystals of tungsten are elas-
tically isotropic, which simplifies the stress analysis and makes tungsten a suitable material for
testing stress measurement methods. Furthermore, it was found that an important compressive
stress of about — 1000 MPa was generated on the surface of the mechanically polished sample, and
this stress decreases to zero value at the depth of about 9 um. On the other hand, the strain-free
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lattice parameter does not change significantly in the examined subsurface region.
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I. INTRODUCTION

TUNGSTEN (W) is an elastically isotropic metal
with a body-centered cubic (bce) structure, having the
highest melting temperature (3422 °C) and the lowest
thermal expansion coefficient (4.5 x 10°¢ m/mK!") of
any pure metal. Its density, equal to 19.3 g/cm?, is the
same as that of gold and higher than that of uranium.
Only a few currently known stable pure metals have a
higher density (i.e., Os, Ir, Pt, Rh, Np, and Pu).[zl
Tungsten thermal conductivity is equal to 174, 159 and
146 W/mK for temperatures of 300, 400 and 500 K,
respectively.’! Relatively high strength and stiffness at
high temperatures, together with an excellent corro-
sion resistance as well as a relatively low price,
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makes tungsten one of the most commonly utilized hard
metals, for example in the military, aerospace, nuclear,
electronic and chemical industries.”) Tungsten can be
used to produce structures working at a high temper-
ature, radiation shields, and parts of a nuclear fusion
reactor,> 1) multi})inhole collimators for magnetic res-
onance devices,!'! electrical switching contacts, mag-
netrons for microwave ovens, laser printers, air cleaners,
and chemical reactors, etc.['?)

Surface finishing, such as polishing, is required for
many engineering applications. Polishing not only
increases the surface smoothness and thereby reduces
the stress concentrators, but also changes the stress state
in the subsurface layers. In addition, the reduction of
surface roughness and the generation of compressive
residual surface stresses have a positive effect on fatigue
life, which is important in many industrial applications.

Polished tungsten products are widely available on the
market (e.g., References 13 through 16) and several
studies have been devoted to the effects of mechanical
polishing on the performance and durability of parts
made from this material. Like many body-centered
cubic metals, tungsten exhibits a sudden ductile to brittle
transition, which occurs at relatively high temperature
(ie., it 1s ductile above and brittle below ca. 130 °C).
Therefore, the reduction of cracking tendency is partic-
ularly important in the case of tungsten surface.!'* ' It
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was found by Yuan e al.l'” that surface residual stresses
induced by mechanical polishing can strongly influence
the surface cracking behavior occurring due to thermal
cycling shocks during the electron beam irradiation.
Furthermore, attempts are being made to improve
tungsten polishing techniques (e.g., References 18
through 20). They are mainly oriented to reducing the
surface roughness while the effect of polishing induced
stresses is only marginally reported in the literature.!!”!
The standard techniques for residual stress analysis
allow scanning of lattice strdlns through the sample with
a gauge volume of a few mm® (neutron diffraction) or
tens / hundreds of micrometers (synchrotron radiation)
or provides an average value of biaxial stresses for a
shallow depth under sample surface (of a few microm-
eters for common laboratory X-rays sources). In the
case of polished samples, more precise methodologies
for the measurements of residual stress gradient below
the sample surface are demanded. Therefore, character-
ization of the residual stresses generated in subsurface
layers of a commercial bulk polycrystalline tungsten due
to mechanical polishing is the aim of the present work.
For this study, nondestructive diffraction methods of the
residual stress measurements using classical characteris-
tic X-rays or synchrotron radiation are the most
preferred Hence, two methods, i.e., the multiple-reflec-
tion grazing incidence X-ray dlﬂractlon (MGIXD)P! %3
based on angular diffraction (AD) and multiple-wave-
length X-ray diffraction (MMXD)?* based on energy
diffraction (ED), were applied in the present study. Such
experimental techniques offer several benefits, among
them the possibility to measure the depth profile of the
residual stress being one of the most important ones.

II. EXPERIMENTAL METHODS

In this work, the so-called Laplace space methodology
based on AD (with Cu Ka radlatlo% and ED (with
synchrotron radiation) techniques?? >” was applied to
measure stresses ¢; and stress-free lattice parameter aq
in the near surface layer of the mechanically polished
tungsten. In this methodology, during the experiment,
the information gauge is determined by exponential
attenuation of the beam intensity, which can be char-
acterized by penetration depth 7, defined in Figure 1.
The size of incident beam is formed by a set of slits in
both techniques. In the case of AD technique and
parallel beam configuration, the size of the diffracted
beam is not limited, and its intensity is scanned versus 26
angle with a parallel plate collimator placed in front of
the point detector. Conversely, in the ED technique with
white synchrotron radiation, narrow slits are applied to
reduce divergence of the diffracted beam before energy-
sensitive detector (Figure 1). The beam optics used in
this work are described in References 22, 23, 28, and 29.

The first part of experiment was performed using X-
Pert PANalytical X-ray diffractometer (Cu Ko radia-
tion) equipped with a Gobel mirror in the incidence
beam optics. The MGIXD method, based on the AD
technique, was applied to measure lattice strains at
different depths close to the surface. Then, the ED
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technique with high energy synchrotron radiation at
EDDI@BESSYII beamline (BESSY, HZG, Berlin)l*”
to verify the results obtained by the MGIXD method
and determine the variation of stresses for a much
greater depth was compared to MGIXD It should be
stated that the classical ED—y method?’*" provides
information from relatively greater depths when high
energy synchrotron radiation is used instead of charac-
teristic X-ray spectra, but the spatial resolution of this
analysis is relatively low. Therefore, in this work, the
MMXD method was applied,” and in the analysis, the
volume of the investigated sample was divided into
separate thin layers. As the result, the stresses were
determined layer by layer with better spatial resolution
compared to the classical ED—y method.

It should be emphasized that the presented methods
of residual stress determination provides exponentially
weighted (‘Laplace space’) depth profiles (vs. penetra-
tion depth 7, ¢f,, Figure 1) and actual ‘real space’
residual stress profiles (vs. depth z under the surface of
the sample, cf., Figure 1(a2g can be determined using
inverse Laplace transform.!

A. AD-MGIXD Method

In the MGIXD method?! 2*?®! (based on AD tech-
nique), the beam of X-rays falls on the sample surface at
very low incident angle (o), which is held fixed during
the measurement (Figure 2(a)). Consequently, X-ray
beam penetrates only a shallow and constant informa-
tion depth in the studied material, which can be
calculated from the formula:

-1
u H

_ 1

! (sin o + sin(20; — O‘)) , .

where x is the linear absorption coefficient of X-rays and
20y 1s the scattering angle, and the penetration depth t©
is defined as the distance from the surface of bulk
material for which (1 — 1/e) = 0.63 part of total intensity
of the incident beam is absorbed.

In order to obtain the information from different
penetration depths, it is necessary to set different angles
of incidence «. Using this method, not only the residual
stress () gradient can be determined non-destructively
but also the depth-dependent profile of strain-free lattice
parameter (ay) can be found.

Stresses can be determined us1ng fundamental equa-
tions of X-ray stress analysis®® from the interplanar
spacings (d(¢,)),,, measured at various directions of
the scattering vector, ie., for different angles between
scattering vector and surface normal: ¥, = Opg — .
Consequently, the diffraction peaks must be determined
for different hkl reflections corresponding to appropriate
20, angles and constant o angle (c¢f., Figure 2
(a )) 2126 435 In the case of multireflection methods,
instead of (d(¢,y)) ., the so-called equivalent lattice
parameters (a(¢, V) = (d(P, ) Vh* + k> + I (for
cubic crystals) are used in the analysis. The values of
measured (a(¢, )}, depend on the values of macros-
tresses ¢; and strain-free lattice parameter ao, ie.:
References 21:
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Fig. 1—The information depth in the Laplace space methodology limited by absorption of the radiation: (a) the beam optics used in AD—angu-
lar dispersion and ED—energy dispersion techniques; (b) variation of the beam intensity with depth (z) below the surface and definition of pene-

tration/information depth 7.
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Fig. 2—Experimental geometries: (a¢) AD-MGIXD method with the diffraction plane perpendicular to sample surface and for constant a angle,
the y 4 angle depends on the 26, angle, which corresponds to different Akl reflection; (b)) ED-MMXD method in which the w angle depends on
the tilt of the diffraction plane, while 26 angle remains constant. The measurements are performed for ¢ = 0 deg and then for ¢ = 90 deg.

(a($, V) g = [Fy(hkl, ¢, ) aylao + ao 2]

where: Fj(hkl, ¢,) are the X-ray stress factors
(XSFs)P% and ¢ is a chosen azimuthal angle (for details
see References 21, 23, 34, 35, 37, and 38).

The angle-dispersive 20, scans performed on the X-
Pert PANalytical X-ray diffractometer were collected in
the continuous scan mode with a step size of 0.02 deg. In
order to decrease the uncertainty of the determined peak
position and to minimize the error caused by sample
displacement in the z-direction, the parallel beam
configuration was used in the measurements. The
incident beam optics was equipped with a G&bel mirror
and Soller slit (0.04 rad.) with the fixed divergence slit
(1/2°), whereas the diffracted beam optics was equipped
with a parallel plate collimator (0.18 deg) and Soller slit
(0.04 rad). Diffraction spectra were collected for ¢ = 0
and 90 deg using proportional point detector (cf.,
Figure 2). The range of 20, scanning was 30 to
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150 deg and the measurements were performed for three
incidence angles o = 10, 15, and 20 deg. In this
measurements, a relatively large surface, at least
3 x 5 mm?, was irradiated due to low values of the
incident angle and the size of the diffracted beam was
not limited, ¢f., Figure 1(a). Because of a large grain size
in the studied sample (with mean diameter of about to
250 um, see Section III), the gauge volume was limited
only to the top of the outer layer of the grains.
Consequently, the estimated number of grains con-
tributing in diffraction was over 300. This grain statistics
and the state of the significantly deformed mechanically
polished surface layer provided smooth diffraction
peaks sufficient for stress analysis. Registered double
K, and K, peaks (Cu radiation) were fitted using
pseudo-Voigt function,*” and interplanar spacings were
calculated from the determined 20 positions using
Bragg’s law.

Residual stresses g;; and stress-free lattice parameter
ap were determined by fitting the lattice parameters
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a(¢, ), calculated from Eq. [2] to the experimental
ones. With this aim the least square procedure was
applied.P®*! To exclude possible experimental errors
caused by diffractometer misalignment, a standard
powder reference sample (LaB6 no. SRM 660 by the
US National Institute of Standard and Technology
NIST) was also measured under the same condition as
the examined specimens.

The relatively high absorption of classical low-energy
X-rays (Cu K, radiation) limits the informative volume
obtained using MGIXD method to a very shallow depth
(up to ca. 1 um). Therefore, the evolution of residual
stress in deeper regions of the sample was performed
using energy-dispersive diffraction with synchrotron
high energy radiation.

B. ED-MMXD Method

Energy-dispersive diffraction (ED) with synchrotron
radiation is a technique convenient for the investigation
of residual stresses or structural properties and their
gradients in the near subsurface region of polycrystalline
materials. A high intensity, wide energy range (up to
90 keV) and perfect collimation of the synchrotron
beam, as well as the possibility of simultaneous regis-
tration of many #hkl reflections allow for investigating
materials up to much deeper regions in the sample than
for classic laboratory X-ray diffractometers. Measure-
ments are performed at the desired fixed 20 diffraction
angle with white synchrotron beam (Figure 2(b)). The
Bragg’s law relates the interplanar spacings (d(¢, ).
to corresponding energies Ejy; of the diffraction lines:

he

<d(¢, W)>{hkl}_ 2Ehk1 sin 0 [3]
where /4 is a Planck’s constant and ¢ is the velocity of
light.

The interplanar spacings are determined for a given
azimuthal angle ¢ and different y-tilts of the scattermg
vector, analogically as in the classical sin>y meth-

od.?”: 33371 The -tilt was around the axis being the

intersection of the diffraction plane with the sample
surface (Figure 2(b)). Each reflection measured with
energy Ej and selected 20 diffraction angle corresponds
to different (average) penectration depth, which in the
case of y-tilt can be calculated from the equation:

_sinfcosy
2u(Enwr)

where u(Ej;;) is the energy dependent linear absorption
coefficient.

The method of residual stress determination using the
ED technique with synchrotron radiation is widely
described in the literature (e.g., References 28, 40
through 45).

In the present work, the ED measurements were
performed in the reflection mode using a white beam
with wavelength in the range A: 0.3-0.18 A (correspond-
ing to energy range E of 40-68 keV) on the EDDI@-
BESSYII beamline.®” Low-energy solid-state Ge
detector was used to collect the diffraction data.

4]
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The primary beam cross-section was equal to 0.5 x
0.5 mm?, and the angular divergence in the diffracted
beam was restricted by a double slit system with
apertures of 0.03 x 5 mm? to Af < 0.005 deg (cf.,
Figure 1(b)). The scattering angle 20 was chosen to be
equal 10 and 16 deg. For these optics the surface of at
least 1.5 mm? is seen as the information area (estimated
on the basis of References 28 and 29), which corre-
sponds to about 30 grains in the studied sample. In spite
of a small number of grains in the information gauge,
the diffraction peaks were sufficient for the stress
analysis especially due to deformation of the near
surface layer during polishing (due to reduction of the
coherent diffraction volume and disorientations between
the subgrains).

In the used MMXD method,** the residual stress
analysis is based on the ED-y synchrotron X-ray
diffraction measurement performed for multiple Akl
reflections. The measurements were performed in the
reflection y-mode (¢f., Figure 2(b)) for ¢ = 0 and 90 deg,
in steps of Ay = 4 deg for y = (0 deg; 72 deg) and
Ay = 2 deg for y = (74 deg; 80 deg). To determine
interplanar spacings (d(¢, /)y, from Eq. [3, the
diffraction peaks were fitted using the pseudo-Voigt
function. Reference Au powder was used to exclude
geometrical errors due to the instrument misalignment.
Subsequently, data were grouped for strictly chosen
penetration depths in order to perform the residual
stress analysis layer by layer in the sample and to get a
much deeper profile than in the case of the MGIXD
method. The benefit of this approach—in contrast with
classical ED stress analysis—is that the depth profile is
not averaged over a wide range of the depth.** This can
be done because in the analysis more than one /hk/
reflection corresponding to the given step of the pene-
tration depth are used (i.e., multireflection approach).
The penetration depth is still expressed by Eq. [4], while
the stresses g; and stress-free lattice parameter ay are
calculated as in the MGIXD method accordingly to
Eq. [2].

III. SAMPLE PREPARATION AND
CHARACTERIZATION

A commercially pure tungsten sample (5 x 5 mm?)
was mechanically non-directionally polished using sili-
con carbide grinding papers, grid from 500 up to 3000.
An average roughness Ra = 73 nm was measured by use
of the WYKO NT9300 (Veeco) profiler (surface topog-
raphy is shown in Figure 3(a)). The electron backscatter
diffraction measurement (the EBSD map is shown in
Figure 3(b)) revealed almost equiaxed grains with
average size equal to 250 ym. The measured hardness
of the polished material was equal to 463 HV. Accord-
ing to Reference 45, in the case of tungsten such
hardness value corresponds to yield strength above
890 MPa.

Crystallographic texture of the studied sample was
characterized by X-ray diffraction method. To perform
this, the Empyrean Panalytical X-ray diffractometer was
used for measurement of the incomplete pole figures 770,
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(a)

1.51

(b)

Fig. 4—Orientation distribution functions (ODF) determined using Cu radiation for the polished tungsten sample by definition not showing any
symmetry. The sections through Euler space with the step of 5 deg are presented along the ¢,.

200, 211 and 310 by the Schulz reflection technique!®®
and the commercial LaboTex software, ver. 3.0.29 by
LaboSoft Company™” was applied for calculation of the
orientation distribution function (ODF). Relatively low
and irregular texture intensities, characteristic for coarse
grains, can be seen in Figure 4.

In calculations of the X-ray stress factors (Fj in
Eq. [2]), the single crystal elastic constants equal to:
Ci, = 501 GPa, C;, = 198 GPa, Cyy = 151.4 GPal*®,
and the ODF shown in Figure 4 were taken into account
using the Eshelby-Kréner method.B%37 It should be
emphasized that tungsten crystals exhibit almost perfect
isotropic elastic properties with Zener ratio 4 very close
to 1 (4 = 0.999). Consequently, it was found that three
models (Voigt, Eshelby—Kréner, and Reuss meth-
ods™**7)) for calculation of the X-ray stress factors give
exactly the same result, regardless of whether the
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measured texture or random texture was used in the
calculations. Moreover, it was verified that the X-ray
elastic constants?®” (s; = —0.71 x 107 MPa ' and Vs,
=321 x10° MPa '), calculated assuming random
texture, are practically independent of the reflection
hkl and model used. It can be concluded, that for
elastically isotropic tungsten, the sy, s,, and Fj factors
do not depend on the reflection skl and crystallographic
texture, which greatly simplifies stress analysis, espe-
cially in the case of the multireflection methods.

IV. RESULTS AND DISCUSSION

The results of both experiments, performed using the
AD-MGIXD and ED-MMXD methods, were analyzed
assuming a biaxial stress state in the information gauge
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volume. Therefore, the ¢;; and o, stress tensor com-
ponents were determined from measurements performed
for ¢ = 0 and 90 deg (Figure 2), while the other
components in Eq. [2] were assumed equal to zero. The
shear stresses o1, 613 and a,3 should be insignificant for
the non-directionally polished sample, without any
distinguishable direction on the surface plain. More-
over, the force perpendicular to the surface can be
neglected in the shallow gauge volume studied in this
work (up to 9 um), leading to the assumption a33 = 0.

It should be noted that the least square procedure
used in this work (based on Eq. [2]) was applied
simultaneously for all the results obtained for both
angles ¢ = 0 and 90 deg in order to determine o1y, 02,
and gy values. To do this, the weighted least-squares
method (WLSM), as described in our previous work,*"
was used (the measurement weight is equal to the inverse
of the square of experimental uncertainty). In Figures 5
through 7, the experimental and fitted a(q’),lp){hk,} Vs.
sin® plots are compared and, additionally, the values
of R? (coefficient of determination—COD)*"! are pro-
vided. Although in the general case the fitted a(¢, lp){,,k,}
vs. sin”y functions can be non-linear (for anisotropic
crystals, as for example Ni*), perfectly linear depen-
dences were obtained for the studied tungsten sample in
spite of different %kl reflections used (Figures 5 through
7). This is the effect of the elastic isotropy of single
crystals in calculations of the stress factors Fj; as
discussed in Section II.

A. AD-MGIXD Classical X-ray Measurements

The AD-MGIXD method was used to measure lattice
parameters (a(¢, ¥)) ey Vs- sin® s plots using different
hkl reflections, for constant values of the incident angle
and for two azimuthal ¢ angles. The so obtained
experimental sin” y functions, fitted by lines accordingly
to Eq. [2], are shown in Figure 5. It can be seen that the
plots are almost perfectly linear (as confirmed by R>
values in the range 0.98 to 0.99) and exhibit similar
slopes for two azimuthal angles ¢ = 0 and 90 deg. Such
results are expected because of the isotropic elastic
properties of tungsten and the symmetry of the non-
directional polishing treatment. As a result, similar
stresses for the x; and x, directions corresponding to
¢ = 0 and 90 deg were found, as shown in Figure 8.

In Figure 5, it can be noted that the uncertainties of
the determined (a(¢,¥)) ney parameters depend on the
hkl reflection because ofi different values of 20,;. The
departure of the measured (a(¢,)) 10, from the fitted
line is observed for all presented plots, probably due to
systematic error which, however, remains almost in the
range of experimental uncertainty.

B. ED-MMXD Measurement Using Synchrotron Radiation

The ED synchrotron measurements were conducted
twice for given scattering angles 20 = 10 and 16 deg.
Subsequently, the lattice parameters (a(¢, ¥)) ., deter-
mined for different tilt angles y and difi"erent hkl
reflections (related to energies through Eq. [3]) but
corresponding to the same penetration depth within the
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range 7 £+ 1 um were selected (MMXD method?¥). The
(ald, W) sy vs. sin® functions corresponding to the
chosen penetration depths, fitted by lines accordingly to
Eq. [2], are shown in Figure 6 for 20 = 10 deg and in
Figure 7 for 260 = 16 deg. It can be seen that the plots
containing results obtained for different Akl reflections
are linear and the multireflection data fit well to straight
lines, as shown in Figures 6 and 7. As in the case of the
MGIXD method, the slopes of (a(, ¥)) s vs. sin”
plots are generally similar for azimuthal angles ¢ = 0
and 90 deg (with some exceptions, e.g., for r = 1 um),
which means that the stresses in these directions are
approximately equal (cf., also Figure 8). In spite of
worse fitting quality for 260 = 10 (R~ is in the range: 0.62
to 0.97), the obtained stresses and slopes coincide with
those determined with 20 = 16 deg (R* is in the range:
0.88 to 0.99).

It should be emphasized that, in the case of MMXD
method, the scatter of the experimental points around
the fitted (a(¢,¥))jupn vs. sin® ¥ lines is more significant
compared to the MGIXD method. Such scatter can be
caused especially by the low statistics of grains in the
case of the ED measurements. Moreover, the disagree-
ment between the experimental and theoretical (fitted)
lines can result from the assumptions introduced in the
analysis, i.e., the so-called second-order stresses>0>1
were neglected and the shear stresses sigma 613 and o653
were assumed to be equal to zero. Another reason of the
(@l ¥)) gy vs- sin? plots nonlinearity is the stress
gradient 1n the information depth.

C. Residual Stress Profile

The evolution of residual stresses and stress-free
parameter a, determined using both MGIXD and
MMXD methods for different penetration depths 7 are
shown in Figures 8 and 9, respectively.

It should be stated that the stresses measured using
the Laplace space methods are in fact defined as the
average values over the volume penetrated by X-rays, i.
e.

* e=2/g,(z)dz
a;(t) = foj’mef/f(dz) (5]
0
where z is a “real depth” under the sample surface, while
7 is the “penetration depth” (calculated from Eq. [1] or
[4]).

It can be noticed that the numerator and denominator
of the above equation takes the form of the Laplace
transform with respect to s = 1/z. In order to find out the
real depth profile of the stress G{/‘SZ)’ the inverse Laplace
transformation can be applied.l>*

Introducing a new variable s = 1/, the mean stresses
6;(t) determined with absorption weight can be ex-
pressed as:

_ o e Pay(z)dz
aij(s) —W—S«f@) [6]

where Z(s) denotes Laplace transform of the function
0(2).
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Fig. 5—The {(a(¢,¥)) sy vs- sin®y plots for the mechanically polished W sample, measured using MGIXD method with a = 10 deg (a), 15 deg

(b) and 20 deg (c). The red lines were fitted to the experimental values of {a(¢,¥)) .y using Eq. [2]. The values of R* (COD) and slopes of the
fitted lines are presented. Uncertainty of peak position d(20) = 0.01 deg was assumed (Color figure online).

METALLURGICAL AND MATERIALS TRANSACTIONS A

xxx—VOLUME 37A, JUNE 2020—5951



t=1um ¢=0° t=1um ¢=90°

0.3170 0.3170
Slope: -0.0064 Slope: -0.0085
" R2 (COD): 0.90 ! R2 (COD): 0.97
0.3168 0.3168 4
B 3
£ 0.3166 - £ 0.3166
= =
A A
= experimental: ?t experimental:
= 03164 ® {110} = 03164 ® {110}
= o {200} = o {200} 3
\% A {310 v A {310} ?
v {222} I v {222} i
031624 ¢ {321} 2 03162 ¢ {321}
— fitted line ¢4 —fitted line
L
03160 T T T T T T T T T T 03160 T T T T T T T T T T
00 01 02 03 04 05 06 07 08 09 1.0 00 01 02 03 04 05 06 07 08 09 1.0
sin?y sin?y
t=2um ¢=0° t=2um ¢=90°
0.3170 0.3170
Slope: -0.0066 Slope: -0.0078
& R? (COD): 0.97 R? (COD): 0.94
0.3168 | 0.3168 4
B €
£ 0.3166 - £ 0.3166 |
= =
A % E| A
= experimental: = experimental:
= 1 e {200} = 1 e {200}
\‘?0,3164 1 (310 \?03164 1 B0}
Y v {222} » \Y v {222}
< {400} 6 * {321} <
031624 » {211} - ¢ 03162 <« {400} i >
e {330} > {211}
fitted line % e {330}
——fitted line
0.3160 +— T T T T T T T T T 0.3160 +— T T T T T T T T T
00 01 02 03 04 05 06 07 08 09 1.0 00 01 02 03 04 05 06 07 08 09 1.0
sin?y sin?y
t=3um ¢=0° t=3um ¢=90°
0.3170 0.3170
Slope: -0.0054 ; Slope: -0.0059
R2 (COD): 0.90 R2 (COD): 0.77
0.3168 A 0.3168 4
€ 3
£ 0.3166 - £ 0.3166 |
= =
A A
= experimental: = experimental:
= 03164 © {200} = 03164 © {200}
& > {211} -y > {211}
\ {220} v {220} >
v {222} v {222}
031624 ¢ {321} 031624 ¢ {321}
< {400} < {400}
® {330} ® {330}
—— fitted line —— fitted line
0.3160 +— T T T T T T T T T 0.3160 +— T T T T T T T T T
00 01 02 03 04 05 06 07 08 09 1.0 00 01 02 03 04 05 06 07 08 09 1.0
sin?y sin?y
t=4um ¢=0° t=4um ¢=90°
0.3170 0.3170
i Slope: -0.0048 Slope: -0.0069
R2 (COD): 0.62 R2 (COD): 0.67
0.3168 0.3168
3 E
£ 0.3166 < 03166 |
Z Z
A A
% experimental: = experimental:
S 03164 ¢ {400} = 03164 < {400}
F > {211} = > {211}
v e {330} v e {330}
{220} {220}
0.3162 4 —fitted line 0.3162 { —fitted line
0.3160 +— T T T T T T T T T 0.3160 +— T T T T T T T T T
00 01 02 03 04 05 06 07 08 09 1.0 00 01 02 03 04 05 06 07 08 09 1.0
siny siny

Fig. 6—The example of (a($, ¥)) jupy vs. sin?y plots obtained using MMXD method with 20 = 10 deg for different depths in the polished W
sample (bar is not visible, if smaller than the symbol indicating the experimental point). The lines were fitted (using Eq. [2]) to the experimental
values of {a(¢,¥)) .y determined for given penetration depths 7 = 1 ym. The values of R? (COD) and slopes of the fitted lines are presented.
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Fig. 7—The example of (a($, ) up vs. sin®y plots obtained using MMXD method with 26 = 16 deg for different depths in the polished W
sample (bar is not visible, if smaller than the symbol indicating the experimental point). Similar presentation as in Fig. 6.
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Fig. 8—Comparison of residual stress profiles in two directions in function of =—penetration depth (a) and z—real depth (b). The uncertainty
bounds are given for 95% confidence. Results gathered from classical diffractometer (MGIXD) and synchrotron experiment (MMXD for two 26

angles).

In the present work, the z-profile of stress is deter-
mined using the method based on a polynomial approx-
imation of the quested stress function cs,-j(z),[52 ie.

N
o;(z) = Zanzn [7]
n=0

Calculating the Laplace transform Z(s) from o(z)
and multiplying the product by s (¢f. Eq. [6]), the &;(s)
and 6;(t) functions can be obtained:

Nooopl N N
Gi(s) =Y ay— and ay(r) =Y nla," = bt
n=0 s =0 =
(8]
where b, = nla,.

If the experimental 6;;(t) function (c¢f., Figure 8(a)) in
the above equation is approximated by a polynomial
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with b, coeflicients, the coefficients a, of the polynomial
given by Eq. [7] can be easily calculated, i.e.:

ay = by /. 9]

Therefore, the approximation of the stress profile vs. real
depth ¢;i(z) can be found when the G;(t) function is
approximated by polynomial.

In the analysis performed in this work, it was assumed
that the evolution of the stresses vs. penetration depth
g;7(t) can be approximated by the second-order poly-
nomial (i.e., N = 2 in Eq. [8]). The result of least square
fitting of the (1) profile by the second-order polyno-
mial, together with the 95% confidence bounds for the
fitted function,*® is presented in Figure 8(a) (the
meaning of the bounds is that the fitted lines lay within
the bounds with confidence of 95%). All the results
coming from the MGIXD and MMXD methods were
taken into account as the experimental points. Finally,
the determined profile of the residual stresses vs. “real
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Fig. 9—The profile of lattice parameter a, as a function of =—pene-
tration depth. Results gathered from classical diffractometer
(MGIXD method) and synchrotron experiment (MMXD for two 20
angles).

depth” in the sample (o1;(z) and 02,(z)) was determined
from Eq. [9] and shown in Figure §(b). The bounds of
a11(z) and o, (z) profiles correspond to those estimated
for the ¢;,(7) and a2 (1) functions.

It can be concluded that the stresses oy, (z) and g23(z)
change significantly with the subsurface depth in the
sample, from a high compressive value (about
— 1000 MPa) near the surface of the sample to almost
zero value in deeper regions (z = 9 um), and the residual
stress profiles are similar in both directions determined
for ¢ = 0 and 90 deg (c¢f., Figure 8(b)). The high stress
value is reasonable for this material exhibiting hardness
equal to 463 HV (yield strength above 890 MPa)
measured in the polished area, which is increased due
to significant deformation in the near surface volume.
Certainly the hardness very close to surface is higher
because the material is severely deformed during
mechanical polishing. The determined biaxial stress
state is beneficial for the sample due to its compressive
character preventing surface and subsurface cracks
initiation and propagation.'”’

What is more, as shown in Figure 9 the value of «
remains approximately constant with the subsurface
depth in the sample The minor variation of a, with
depth (in the margin of £ 0.001 A) can be caused by the
nonzero value of 33 stress, which was neglected in the
analysis and/or experimental errors due to sample
misalignment or beam divergence. The latter effects are
difficult to take into account in the analysis; however,
the changes of ay (Figure 8) are relatlvely small
compared to the ranges (a(¢, w)){h,d} vs. sin’y evolu-
tions (Figures 5 through 7). Therefore, contrary to the
very convincing results regarding stress measurements,
the interpretation of the presented a, variation is
unjustifiable.

The unique advantage of the experimental techniques
used in the present work is the possibility of stress
gradient determination in the near surface volume. It
should be emphasized that the stress evolution in
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function of the real depth was found. Due to large
absorption of the classical X-rays, only the subsurface
stress (down to 1 um) can be measured using MGIXD
method, but application of high energy synchrotron
radiation allowed for significantly extending the acces-
sible deFth (up to 9 um). The advantage of the MM XD
method®¥ is its relatively high spatial resolution in the
depth of about 1 um, Wthh was unattainable for the
classical ED—y method.® What is important, an
excellent continuation of the results vs. penetration
depth was obtained using the MGIXD method for small
depths (up to about 1 gm) and MMXD method for
deeper regions of the sample (cf., Figures 8(a) and 9).

Finally, it should be stated that the studied tungsten
sample is very convenient for testing of the stress
analysis methodologies due to the material elastic
isotropy. In such a case, the stress factors F;; do not
signiﬁcantl?/ depend on the method used for their
calculation***); moreover, the F; factors do not depend
on crystallographic texture nor on the Akl reflection.
Th1s leads to the linear relations of (a(¢,¥)) ey vs.
sin® (cf., Figures 5 through 7) and unique results of the
analysis, without the additional model assumptions
which are necessary for calculations of Fj factors for
anisotropic materials (e.g., for austenitic stainless steel
or for nickel, see References 38 and 40).

V. CONCLUSIONS

This work reports on the novel multiwavelength method
(MMXD), which is a nondestructive approach for residual
stress measurements and—in comparison to multireflec-
tion grazing incidence X-ray diffraction method
(MGIXD)—provides significantly wider subsurface depth
of measurement. By using a commercial bulk polycrys-
talline tungsten, the residual stress generated in the
subsurface layers due to mechanical polishing was studied.

The obtained results reveal a significant residual stress
gradient present in the subsurface volume of a polished
tungsten sample. The compressive stress of about —
1000 MPa was determined very close to the polished
surface (MGIXD method). Going deeper in the subsur-
face volume, the residual stresses gradually decrease
down to zero value at the depth of about 9 um (MMXD
method). Although the stress state remains compressive
in the experimentally available range (up to z = 9 um,
cf., Figure 8(b)), the trend of evolution and the
approximately zero values at the maximum measured
depths indicate that the balancing tensile stress is
expected in the deeper regions of the sample.

The almost isotropic elastic properties of tungsten
crystallites simplify the analysis of the residual stress
state. The value of lattice parameter remains almost
constant up to 9 um of the penetration depth, regardless
of the method used. Furthermore, the results obtained
using MGIXD for sample surface are continued by the
MMXD results. High—energy synchrotron radiation
allowed for measurements of significantly larger sub-
surface depths in comparison with classical laboratory
X-rays. The results of this work have confirmed that the
methods used are complementary, ie., the MMXD
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method provides experimental information about stress
evolution for the depth not available using the MGIXD
method, while the MGIXD measurements give more
precise results close to the sample surface. The MMXD
with synchrotron radiation allowed for determining the
depth-dependent stress profile with spatial resolution of
1 um, which is much better than in the case of standard
ED-y measurements.>¥

It can be concluded that the MGIXD and MMXD
methods are a powerful and unique tool for stress
measurement in subsurface volume, which cannot be
investigated with other techniques. These methods can
be used to study residual stresses resulting from surface
finishing processes, such as mechanical polishing.
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