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The Kirkpatrick–Baez (KB) refocusing mirror system installed at the PG1

branch of the plane-grating monochromator beamline at the soft X-ray/XUV

free-electron laser in Hamburg (FLASH) is designed to provide tight

aberration-free focusing down to 4 mm � 6 mm full width at half-maximum

(FWHM) on the sample. Such a focal spot size is mandatory to achieve ultimate

resolution and to guarantee best performance of the vacuum-ultraviolet (VUV)

off-axis parabolic double-monochromator Raman spectrometer permanently

installed at the PG1 beamline as an experimental end-station. The vertical beam

size on the sample of the Raman spectrometer, which operates without entrance

slit, defines and limits the energy resolution of the instrument which has an

unprecedented design value of 2 meV for photon energies below 70 eV and

about 15 meV for higher energies up to 200 eV. In order to reach the designed

focal spot size of 4 mm FWHM (vertically) and to hold the highest spectrometer

resolution, special fully motorized in-vacuum manipulators for the KB mirror

holders have been developed and the optics have been aligned employing

wavefront-sensing techniques as well as ablative imprints analysis. Aberrations

like astigmatism were minimized. In this article the design and layout of the KB

mirror manipulators, the alignment procedure as well as microfocus optimiza-

tion results are presented.

1. Introduction

FLASH is a single-pass free-electron laser (FEL) whose

working principle is based on the self-amplified spontaneous

emission (SASE) process (Ackermann et al., 2007). Operating

as a user facility since 2005, FLASH provides XUV and THz

radiation to user experiments at five beamlines (PG1, PG2,

BL1, BL2, BL3) (Tiedtke et al., 2009). The FEL beam is

switched between beamlines by plane grazing-incidence

mirrors. The so-called PG beamline is equipped with a high-

resolution plane-grating monochromator (PGM) of SX700

type (Petersen, 1982; Riemer & Torge, 1983) and employs two

beamline branches, namely PG1 and PG2 (Martins et al., 2006;

Gerasimova et al., 2011), used alternatively. While PG2 serves

as an open port for various types of user experiments, PG1

has a VUV double-stage Raman spectrometer installed as

a permanent end-station, dedicated to inelastic soft X-ray

scattering (IXS) experiments. This unique instrument covers a

photon energy range from 20 to 200 eV with unprecedented

energy resolution of about 2–15 meV (design values) for the

entire spectral range and allows a strong suppression of the

elastic line (Rusydi et al., 2014). Since both off-axis parabolic

Raman monochromators disperse the scattered radiation in
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the vertical direction and the first monochromator stage does

not have an entrance slit, the maximum achievable resolution

of the instrument is in principle limited by the vertical spot size

of the FEL beam on the sample. Hence, the optimization and

alignment of the PG1 beamline focus is indispensable to meet

the ultimate resolution of the Raman spectrometer.

Many third-generation light sources like storage-ring-based

synchrotrons use refocusing optic systems in a configuration

developed by Kirkpatrick and Baez in 1948 (Kirkpatrick &

Baez, 1948) with or without modifications like mirror bending

or staging (Yashchuk et al., 2013). A Kirkpatrick–Baez pair

(KB) of plane elliptical mirrors separates focusing in sagittal

and tangential planes and thus provides wavelength-inde-

pendent spherical and astigmatic aberration-free focusing of

radiation. Nowadays, also fourth-generation light sources like

FELs incorporate KB-focusing configurations in their beam-

line design (Raimondi et al., 2014; Siewert et al., 2012; Tono

et al., 2013). As will be shown in the following, the KB system

installed at the PG1 beamline provides sub-10 mm micro-

focusing, thus making high-resolution Raman scattering

experiments possible.

2. The PG1 beamline

The PG1 monochromator beamline branch is schematically

shown in Fig. 1. Briefly, the PG1 beamline consists of eight

optical elements. A plane mirror M0 switches the FEL beam

between different beamlines of FLASH, followed by a

toroidal mirror M1 which focuses the beam in the horizontal

direction to a focal spot that lies 1 m before the PG mono-

chromator exit slit and collimates the FEL beam in the vertical

direction. Passing the PG monochromator, the vertically

dispersed FEL beam is then focused by the cylindrical

switching mirror unit (SMU) vertically onto the exit slit

position. A plane mirror M6 lifts the beam up which was

needed for installation of the Raman spectrometer. The KB

pair installed at the end of the PG1 beamline focuses the beam

onto the sample in the experimental chamber of the Raman

spectrometer. The PG1 monochromator exit slit (SMU

vertical focus) is refocused by the vertically focusing mirror of

the KB pair (M7), while the horizontal focus from the toroidal

mirror M1 is refocused by the horizontally focusing mirror of

the KB pair (M8).

3. Design and development of the KB refocusing unit

The optical design of the KB refocusing mirror unit was

carried out by the company Scientific Answers and Solutions.

Mirrors and mechanics were manufactured in the collabora-

tion of DESY with University of Hamburg (AG Rübhausen)

and several companies (BesTec, Jenoptik, Carl Zeiss). The

mirrors have been characterized using the Nanometer Optical

Component Measuring Machine (Siewert et al., 2004) at the

BESSY-II Optics Laboratory of the Helmholtz Zentrum

Berlin (Siewert et al., 2010). In order to provide precise in situ

mirror alignment options the KB mirror system is equipped

with in-vacuum manipulators. The necessary resolution and

tolerances of the manipulators were guided by simulations

carried out within the XOP SHADOW package (Cerrina &

Sanchez del Rio, 2010) (see below). As mentioned before, the

KB refocusing optics consist of two mirrors: M7 which deflects

the beam in the vertical direction and re-images the vertical

PGM slit onto the sample position, and mirror M8 which

refocuses in the horizontal direction. The incident angle of

both focusing elements measured from their surface is 6�.

Fully in-vacuum motorized mirror holders provide the needed

angle resolution up to 0.003� and movement resolution of

30 mm for the most crucial degrees of freedom (DoF) like

pitch and roll angles and translations along the beam as well as

along the mirror normal, respectively.

The whole PG1 beamline including the KB pair has been

ray-traced via XOP SHADOW simulation software. Para-

meters of the PG1 focusing optical elements are given in

Table 1. The source was modelled with a diameter size of

�160 mm and a divergence of �150 mrad with Gaussian

spatial and angular distribution. An example of the simulated

focal spot size is shown in Fig. 2. The theoretical focal spot size

is calculated to be of 4.1 mm FWHM vertically and 6.7 mm

FWHM horizontally. The simulations were performed at a

FEL wavelength of 13.5 nm, the PG monochromator in the

photondiag2015 workshop

124 Siarhei Dziarzhytski et al. � Microfocusing at the FLASH PG1 beamline J. Synchrotron Rad. (2016). 23, 123–131

Figure 1
Overview of the plane-grating monochromator (PGM) beamline at FLASH. Behind the monochromator the beam is guided either to the PG1 or PG2
beamline branch by a cylindrical switching mirror unit (SMU). At PG1 a plane mirror M6 lifts the dispersed beam up to the Kirkpatrick–Baez mirror unit
which refocuses the beam onto the sample of the permanently installed Raman spectrometer endstation. Only the focus sizes in the vertical direction for
both beamlines are indicated in the figure.



first order, fixed-focus-constant cff = 2 and exit slit width of

20 mm. Furthermore, the surface roughness and slope error of

each focusing optical element of the beamline was taken into

account.

Within these simulations the influence of each DoF (pitch,

roll, yaw angles as well as translation along the mirror normal

and along the beam) of the KB pair mirrors on their focusing

properties was estimated to provide manipulator tolerances

and required motor resolution. Our studies found the stron-

gest effect on the focusing performance and aberrations from

the mirror misalignment in pitch and roll angles. A summary is

given in Table 2. The effect of the pitch and roll angle mis-

alignment is shown in Fig. 3. Here, the focal position was

calculated as a function of the rotation of the vertically

focusing M7 mirror around the aforementioned angles. In the

graph, the ’zero focal distance’ is the nominal KB focal

distance 400 mm downstream measured from the pole of the

M8 mirror. The derived required resolutions to ensure

optimum alignment options for all DoF are given in Table 2.

It is well known that ultra-precise reflective optical

elements have to be mounted with special care to avoid mis-

shaping and to provide optimal performance at the beamline

(Siewert et al., 2011). Already small surface distortions of

several tens of nanometres and certain space frequencies

(36 mm�1 and 16 mm�1 for M7 and M8 mirrors, respectively)

can increase the spot size by 20%. The effect of the mechanical

clamping of the manipulators on the KB mirror surface was

therefore investigated at the Helmholz Zentrum Berlin

BESSY-II/INT/Optical Metrology Laboratory by two-dimen-

sional slope mapping employing the BESSY-NOM (Siewert et

al., 2014). The mirror topography in terms of height was

gained by integration of the slope data. The mirrors were

measured in the free (unclamped) as well as in the mounted

state. Mapping of, for example, the M7 mirror surface was

performed in the sagittal direction (dx = 0.5 mm in the sagittal

and dy = 1 mm in the longitudinal directions). Fig. 4 shows the

M7 central aperture section of 95 mm � 8 mm. Only small

figure deformations in the range of 2 nm peak-to-valley and

less were found. Such a small effect is stipulated by the mirror

thickness of 45 mm and clamping mechanism, a U-shape

frame positioned 30 mm below the optical surface of the

mirrors in a special cavity and fixed to the mirror via three

ball-head screws. The results of the M8 mirror surface

measurements as a comparison of two different cases in

analogy to the M7 mirror are given in Fig. 5. No visible

changes were obtained in the SHADOW simulations with the

mirrors in the unclamped or clamped cases.
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Table 1
Focusing optical elements of the PG1 beamline.

� is the angle between the ellipse major semi-axis and the vector to the mirror
pole in polar coordinates (the ellipse centre is the coordinate system centre).
The demagnification of M7 is 4.9 : 1 and of M8 is 9.9 : 1. Tan = tangential; Sag =
sagittal.

Mirror
Incidence
angle (�)

Distance
from source
(m) Shape Radius (m)

M1 2 52 Torroidal 714.8/3.63 (Tan/Sag)
SMU 2 60.72 Cylindrical 0.628 (Sag)
M7 6 72.67 Elliptical (Tan) 1.77/0.14 (� = 5.2�)
M8 6 72.87 Elliptical (Tan) 2.27/0.13 (� = 2.3�)

Mirror
Size (L �W)
(mm)

Slope error
(arcsec r.m.s.)

Microroughness
(nm r.m.s.)

M1 490 � 30 0.5 0.5
SMU 280 � 30 0.5 0.37
M7 110 � 25 0.14 0.4–0.6
M8 50 � 25 0.2 0.4–0.45

Figure 2
Focal spot size (FWHM) of the KB optics simulated in SHADOW. The
focus size is 4.1 mm � 6.7 mm (vertical � horizontal). The simulation was
carried out for a 13.5 nm FEL photon wavelength, the PG mono-
chromator in first order (cff = 2) and an exit slit width of 20 mm. Surface
roughness and slope error of each focusing optical element of the
beamline were taken into account.

Table 2
Results from the KB pair ray tracing.

The column headed ‘Influence (effect)’ shows how strong a particular DoF
affects the focusing properties of the mirror and its specific effect in the ray
tracing. ‘Resolution’ specifies needed resolution for the designed mirror
manipulator estimated via SHADOW. ‘Travel range’ provides the specified
range for the translation/angle for the mirror manipulator.

Degree of freedom Influence (effect) Resolution Travel range

Translations
Orthogonal to

mirror normal
Weak (losses) 0.1 mm �10 mm

Along beam Moderate (astigmatism,
size, losses)

0.05 mm �10 mm

Along mirror
normal

Strong (astigmatism,
losses)

0.03 mm �5 mm

Rotations
Pitch Strong (astigmatism,

losses)
0.003� �2�

Roll Moderate (astigmatism,
size, shape)

0.05� �2�

Yaw Weak (shape, size) 0.1� �2�



The final KB pair mount is shown in Fig. 6. The measure-

ments of the mirror movement accuracy and reproducibility

were performed by means of an optical autocollimator

(ELCOMAT3000, MÖLLER-WEDEL OPTICAL GmbH)

and, complementary to it, by measuring the displacement of a

reflected focused He–Ne laser beam on the mirror at 2 m

distance on a CCD camera (Basler scA1300-32fm, pixel size

3.75 mm) with 0.001� accuracy. The fiducialized KB unit was

installed at the beamline and pre-aligned to its nominal

position with the help of the survey group MEA-2 DESY

using a laser tracker (Leica LTD800) and an alignment laser

implemented in the PG beamline.

4. In situ KB pair focus optimization using FEL radiation

The KB focus optimization and characterization was

performed using two techniques: (i) wavefront determination

as well as aberration determination employing a compact

Hartmann sensor from which beam parameters like beam

width, divergence, waist diameter, Rayleigh length and waist

position (focus) can be reconstructed (Schäfer & Mann, 2002);

and (ii) ablative imprints studies (Liu, 1982; Chalupský et al.,

2010). The Hartmann sensor was jointly developed by DESY

and the Laser-Laboratorium Göttingen (LLG) and was
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Figure 5
Measured M8 mirror surface map of aperture size 50 mm� 25 mm in two
states: (a) free state, (b) clamped state. The height is shown on the right
by a color bar.

Figure 4
Measured M7 mirror surface map of aperture size 95 mm � 8 mm in two
states: (a) free state, (b) clamped state. The red circled area indicates the
area affected most by clamping. The height is shown on the right by the
color bar.

Figure 6
Overview of the KB mirror unit. The in-vacuum mirror manipulators are
fully motorized and allow in situ alignment of the KB pair.

Figure 3
Simulated (SHADOW) effect of M7 mirror pitch and roll angle
misalignment on its focusing properties. The focus position variation is
estimated relative to its nominal position of 400 mm downstream from
the pole of the M8 mirror when the M7/M8 mirrors are aligned. For
further explanation see the text.



available on site as a ready-to-use online diagnostics (Flöter et

al., 2010). Wavefront sensing (WFS) for beam characterization

and beamline alignment has already been successfully used at

different FEL facilities like, for example, FLASH and FERMI

(Keitel et al., 2016; Raimondi et al., 2014). For the ablative

technique we had developed a special diagnostics tool which

allows determination of in situ focus imprint sizes along the

caustic curve with 2.5 mm resolution. In addition, the instru-

ment provides the possibility to estimate focus sizes by means

of fluorescence imaging using a Ce:YAG crystal and a CCD

camera with 12 mm resolution. A full review of the instrument

is given by Gerasimova et al. (2013).

The KB focus characterization was performed for the PG

monochromator set to both zero and first-order diffraction

modes at FEL wavelengths of 6.5 nm, 13.5 nm and 25.8 nm,

always working in single-pulse mode. Two complementary

methods have been used for mainly two reasons. Firstly,

wavefront measurements are carried out behind the beam

waist (indirect method) and the reconstructed beam profile

parameters, like, for example, the focus size, in principle

depends on the degree of spatial coherence (Singer et al., 2012;

Flöter et al., 2010). Since the coherence of the beam cannot be

directly monitored and thus the influences of partial coher-

ence are not taken into account in the evaluation, the results

for focus size might suffer from an underestimation. On the

other hand, the ablative imprints approach tends to over-

estimate the beam size for non-Gaussian beams, in particular

when the intensity of the photon pulse is too high, such that

the ablation process is not scaled linearly with the intensity

and the beam profile has a complicated shape. Therefore both

diagnostic techniques are used for focus characterization

in a complementary fashion. Secondly, for IXS studies with the

VUV–Raman spectrometer the PG monochromator is typi-

cally operated in dispersive high-resolution mode (first order

or higher diffraction order). The photon flux which is one

order (or more) of magnitude lower in the first order

compared to zero order prevents single-shot ablative

measurements. Therefore, wavefront sensing needs to be used

to optimize and characterize quantitatively the PG1 focus

in terms of its size, position and aberrations present. To

complementary confirm the results from the imprint studies,

wavefront measurements have also been carried out for zero-

order monochromator operation. As will be shown in the

following sections, the two techniques provide quantitative

results which are in a very good agreement with each other.

4.1. Focus characterization by ablative imprints and WFS
measurements (monochromator in zero order)

4.1.1. Ablative imprints measurements. Ray tracing studies

on the sensitivity/influence of each mirror DoF on the KB pair

focusing properties reduced the relevant parameter space for

KB mirror alignment to only three parameters, namely pitch,

roll and translation in the direction of the mirror normal. For

the KB system alignment, single-shot ablative imprints were

taken at five longitudinal positions along the focused FEL

beam (z-scan) employing the aforementioned diagnostics

chamber installed at the nominal PG1 focus position. The PG1

monochromator exit slit was kept open. PMMA [poly(methyl

methacrylate) coated Si wafers (Silson UK; 20 mm � 10 mm

Si wafers, 1 mm, 2.5 mm and 5 mm PMMA coated] were used as

samples for the imprints. The experimental setup is schema-

tically shown in Fig. 7. For each z-position, imprints at five

FEL intensities with maximum pulse energies of �100 mJ,

varied by solid state filters over a range of 10% to 0.5%

transmissions, were taken. Furthermore, in order to take into

account shot-to-shot fluctuations of the SASE FEL beam, five

shots per given intensity and mirror setting were recorded.

In total about 3000 imprints were analyzed in situ with the

diagnostics chamber long-range microscope during the focus

optimization process. Fig. 8 shows the deduction of the FEL

focus size after inspection of the PMMA imprint sizes in the

X and Y directions resulting from single-shot irradiation at

different FEL intensities. The linear fit of this semilog plot of

the beam radius as a function of FEL pulse intensity leads to a

slope which is proportional to the focus size. Details of the

analysis method are given by Liu (1982) and Chalupský et al.

(2010).
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Figure 7
Experimental setup for KB focus characterization. Ablative imprint
measurements and wavefront analysis were employed in a complemen-
tary fashion. The distance from the focus to the Hartmann plate was
about 1000 mm; that from the Hartmann plate to the ICCD is 250 mm.

Figure 8
Deduction of the vertical FEL focal size from measured PMMA imprint
sizes (vertical radius). The linear fit of the semilog plot of measured
radius2 as a function of FEL pulse intensity Ln(I) leads to a slope which is
proportional to the focus size. Here the longitudinal position includes an
offset of +10 mm relative to the nominal one. The slope in this figure
corresponds to a vertical focal size of (11.1 � 0.8) mm FWHM.



The results of M7 and M8 mirror pitch variation are given in

Figs. 9 and 10, respectively. Figs. 9(a) and 9(b) clearly show

that the longitudinal position of the vertical focus varies as a

function of M7 pitch angle while the horizontal focus position

does not change. Correspondingly, the same is valid for

variation of the M8 pitch, keeping M7 fixed [Figs. 9(c) and

9(d)]. The fact that under the M7 pitch variation (which should

alter the vertical focus position only) the position of the

horizontal focus does not change is a clear sign that horizontal

and vertical foci are perfectly decoupled and thus can be

overlapped to reduce an intrinsic astigmatism of the PG1

beamline introduced by the toroidal M1 mirror prior to the

monochromator (see Fig. 10). There, the measured horizontal

and vertical focus spot sizes along the caustic curve are

plotted. The diameter of the focal spot was determined to be

(11.1 � 0.8) mm FWHM in the vertical and (12 � 1.5) mm
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Figure 9
Focusing properties of the KB optics as a function of M7 pitch variation (a, b) and M8 pitch variation (c, d). The graphs show the longitudinal position of
the vertical and horizontal foci together with the corresponding waist size in FWHM. For each mirror pitch variation the corresponding other mirror
setting was kept fixed. Measurements were performed at 13.5 nm with the PG monochromator in zero order.

Figure 10
Longitudinal positions and sizes of the KB vertical and horizontal foci before (a) and after (b) the alignment in zero-order monochromator operation.
The insets show the shape of a single-shot imprint as an example. Measurements were carried out at 13.5 nm. The maximum FEL pulse energy was
�100 mJ but has been attenuated to 10–0.5% transmission during the measurement series. Further details are given in the text.



FWHM in the horizontal direction. Obviously, these sizes are

larger than the theoretically achievable design value of

approximately (4 � 6) mm. This is because by operating the

monochromator in zero order the KB focus size is stipulated

by the FEL source size, position and coherence. Simulations

in SHADOW cannot take into account the latter effect.

However, for Raman scattering experiments with the PG

monochromator working in first or higher diffraction order

the source size and position for the KB vertically focusing

mirror will be fixed by the monochromator exit slit. Under

such conditions a smaller vertical spot size is expected (see

below).

4.1.2. Focus characterization by wavefront measurements.
As for the ablative imprints technique, the exit slit of the PG1

monochromator was kept open during measurements in zero

order. The horizontal and vertical focus sizes were recon-

structed from the average of ten single-shot wavefronts

recorded for each M7/M8 mirror setting. The results are

shown in Fig. 11. The distance between vertical (red) and

horizontal (black) waist positions and the Hartmann sensor

plate are plotted as a function of M7 pitch angle (Fig. 11a).

Again, only the vertical waist position changes with M7 pitch

angle. As can be seen from this figure, both horizontal and

vertical focus overlap at the M7 pitch angle of 0.08�. The

FWHM waist sizes are given in Fig. 11(b) and are (7 � 1) mm

FWHM in the vertical and (7 � 2) mm FWHM in the hori-

zontal direction. Note that the waist size does not change with

the pitch angle. Similar results were obtained from measure-

ments carried out by varing the pitch angle of the M8 mirror

with M7 fixed. Roll and yaw angles of the mirrors as well as

translation parallel to the mirror normal were also varied,

which resulted in a skewed beam profile and astigmatic

focusing. Considering the results from both diagnostic tech-

niques it becomes obvious that: (i) the horizontal and vertical

focus are decoupled from each other; (ii) it is possible to adjust

the mirrors such that astigmatism is no longer present; (iii) the

KB focus can be brought to its nominal position (zero position

on the abscissa in Fig. 9). However, for geometrical reasons it

was decided to set the KB focus to a position 10 mm down-

stream of the nominal position of 400 mm measured from the

M8 mirror pole, as it provided more space to work later with

the Raman spectrometer and did not affect the focal size.

Astigmatism has been minimized. Furthermore, comparison

of the results from the two diagnostic techniques (mono-

chromator in zero order, exit slit open) clearly demonstrates

that both approaches are consistent.

4.2. KB focus optimization for first-order monochromator
operation

As already mentioned, in order to achieve the ultimate

Raman spectrometer resolution of up to 2 meV, the nominal

operation mode of the primary monochromator for Raman

scattering experiments is the dispersive high-resolution mode

with narrow energy bandwidth accomplished by a small

vertical exit slit width of the PG monochromator down to

20 mm. There, the exit slit basically works as a source for the

KB system. This affects the KB optics focusing compared with

zero-order operation and should allow to reach FEL micro-

focusing conditions with 4 mm FWHM (vertically). However,

it makes an individual optimization using WFS necessary. The

KB mirrors alignment and WFS measurements were carried

out at a FEL wavelength of 13.5 nm, operating the mono-

chromator in first diffraction order (cff = 2). The processed

data from the WFS measurements are shown in Figs. 12 and 13

for the M7 and M8 pitch variation, respectively. A recon-

struction of the final spot and its relative wavefront are shown

in Figs. 14 and 15, respectively. As can be seen from the results,

the KB optics provide a designed focal size of (5.8 � 1) mm

FWHM in the vertical direction and (6� 2) mm FWHM in the

horizontal direction for the PG monochromator working in

the first diffraction order. It is important to stress that the

horizontal source size is not limited by the PG mono-

chromator exit slit. Therefore it strongly depends on the FEL

pointing stability and the actual source size in the undulator.

The optical surface quality has a minor effect on the focus size.

Ray tracing in SHADOW shows that including roughness and

slope errors for KB focusing elements in simulations results in

only a slight increase of the focal size, i.e. V � H = 4.1 �

6.7 mm with roughness and errors included instead of V�H =

3.8 � 5.6 mm without taking them into account. Overall the
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Figure 11
Wavefront sensor measurements of the KB focus in zero-order
monochromator operation. Vertical and horizontal waist positions and
sizes were measured as a function of M7 pitch angle (keeping M8 fixed).
(a) Absolute distance of the waists to the wavefront sensor (red: vertical;
black: horizontal) and (c) waist sizes in FWHM. Measurements were
performed at 13.5 nm with the PG monochromator in zero order.



measured focii after the optimization process show excellent

agreement with the simulation results.

5. Conclusion

A new KB refocusing mirrors unit was developed and

commissioned at the FLASH PG1 monochromator beamline.

It provides microfocusing of (5.8 � 1) mm FWHM vertically

and (6 � 2) mm FWHM in the horizontal direction at the

sample position of the VUV Raman spectrometer. The focus

optimization was performed by using two complementary

measurement techniques, namely ablation imprints and

wavefront analysis. The vertical focus achieved matches the

design value of the KB pair system and by that fulfills the

requirement in terms of focal spot position and waist size for

the high-resolution VUV Raman spectrometer.
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Figure 12
Wavefront sensor measurements of the KB focus in first-order
monochromator operation. Vertical and horizontal waist positions and
sizes were measured as a function of M7 pitch angle. (a) Absolute
distance of the waists to the wavefront sensor (red: vertical; black:
horizontal) and (b) FWHM waist sizes. Measurements were performed at
13.5 nm, the PG monochromator in first order (cff = 2), exit slit width
20 mm. A minimum vertical focus size of (5.8 � 1) mm FWHM has been
achieved.

Figure 13
Wavefront sensor measurements of the KB focus in first-order
monochromator operation. Vertical and horizontal waist size (FWHM)
for two M8 pitch angles (M7 being fixed).

Figure 14
Reconstructed final spot profile from recorded wavefront.
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Figure 15
Wavefront (recorded at Hartmann plate position) for optimized KB pair
optics. The peak-to-valley is given in wavelengths (1.7 nm � 14 nm).
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