
 

1 
 
 

 
 

Advanced characterization and in-situ growth monitoring of Cu(In,Ga)Se2 thin films and solar 
cells 

D. Abou-Ras, M. Bär, R. Caballero*, R. Gunder, C. Hages, M. D. Heinemann, C.A. 
Kaufmann, M. Krause, S. Levcenco, R. Mainz, J. Márquez, A. Nikolaeva, A. Redinger#, N. 
Schäfer, S. Schorr, H. Stange, T. Unold, R.G. Wilks  

Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 
Berlin, Germany 

* now at: Current address: Universidad Autónoma de Madrid, Departamento de Física 
Aplicada, C/ Francisco Tomás y Valiente 7, 28049 Madrid, Spain 

# now at: Current address: University of Luxembourg, 162a, avenue de la Faïencerie, L-1511 
Luxembourg 
 
 

Corresponding author: daniel.abou-ras@helmholtz-berlin.de 

 

Abstract 

The continuous improvement of Cu(In,Ga)Se2 (CIGSe) solar cells relies considerably on 

advanced characterization of individual layers in the solar-cell stacks as well as of completed 

CIGSe devices. The present contribution provides an overview of corresponding efforts 

performed by various research groups at Helmholtz-Zentrum Berlin für Materialien und 

Energie GmbH. In-situ growth monitoring of CIGSe absorber layers by means of energy-

dispersive X-ray spectrometry and light scattering is described, as well as structural analyses 

by means of X-ray and neutron diffraction. In addition, the characterization of surfaces and 

interfaces by soft X-ray and electron spectroscopy, the microscopic analysis by means of 

correlative electron microscopy, and optoelectronic characterization by optical spectroscopy 

are highlighted. The present contribution shows which substantial efforts in a research 

network are necessary in order to obtain deeper insight into materials properties and 

potentially limiting factors for the device performance, as well as to be able to control these 

factors during the solar-cell production. 
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1. Introduction 

Thin-film solar cells based on Cu(In,Ga)(S,Se)2 (CIGSSe) absorber layers have reached very 

high technological standard, with conversion efficiencies of almost 23% on laboratory-sized 

devices [1] and above 19% for industrially produced modules of 30 x30 cm2 size [2].In spite 

of these achievements, the improvement of production processes for these solar cells still 

requires further knowledge about thin-film and phase formation as well as microstructure 

during the synthesis and thus, limitations in terms of reproducibility. Also, the optimization of 

thin films and their interfaces in the solar cell stacks remains an important issue for further 

improvements of the conversion efficiencies towards the 25% level and beyond. 

Therefore, research in recent years at Helmholtz-Zentrum Berlin für Materialien und Energie 

GmbH (HZB) has focused on development of methods for the in-depth analysis of growth 

processes, mainly for Cu(In,Ga)Se2 (CIGSe) thin films, based on light scattering, X-ray 

diffraction, and X-ray fluorescence. In addition, intensive work has also been conducted 

concerning the study of the (micro)structural, compositional as well as the electrical and 

optoelectronic properties of thin films and their interfaces, especially also when included in 

complete devices, on both, macroscopic (micrometers, millimeters) and microscopic 

(submicrometers) length scales. The present contribution will give an overview of these 

research efforts at HZB, with detailed examples of various methods for in-situ growth 

analysis as well as characterization of materials and devices. 

 

2. In-situ monitoring of Cu(In,Ga)Se2 growth  

Deviations from the ideal band structure in a solar absorber layer, such as defect states in the 

band gap, can trap charge carriers and/or enhance recombination, thereby decreasing the 

power-conversion efficiency of the corresponding solar cell. Such electronic defects can 
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originate from extended structural defects in the CIGSe absorber lattice or extrinsic dopants. 

In order to further improve the performance of CIGSe solar cells towards their theoretical 

limit, one of the key challenges is to understand the structural origins of electronic defects, 

their correlation to the optoelectronic properties of the CIGSe semiconductor thin film and to 

identify ways to eliminate these origins. A promising approach to tackle this task is to analyze 

and correlate the time evolution of structural and optoelectronic properties during film 

deposition.  

In-situ analysis by X-ray diffraction (XRD) and white light reflectometry (WLR) during the 

CIGSe absorber growth allows not only to detect planar defects, but offers the possibility to 

understand their formation and annihilation during thin film deposition (the reader is referred 

to Ref. 3 for an overview). Extended structural defects may affect the XRD patterns [4], 

which makes them detectable in real time by in-situ XRD. Specifically, stacking faults of the 

112 lattice planes and related planar defects can be detected by XRD through a characteristic 

broadening of the 112 diffraction peak with an additional maximum. This additional 

maximum is caused by the disturbance of the chalcopyrite symmetry [5,6]. Due to possible 

effects of texture it is not possible to exactly quantify the concentration of stacking faults 

detected by XRD. However, comparison with simulations show that already a concentration 

of a few percentages can lead to a signal of the magnitude observed experimentally [6].  

By ex-situ analysis it has been found that a high density of stacking faults is correlated with a 

reduced electron mobility [7]. Additionally, theoretical calculations predict that dislocations at 

the edge of stacking faults may induce defects states in the band gap [8]. 

Consequently stacking faults could also have an influence on the light absorption 

characteristics of CIGSe. Defects with energy states close to the band edge change the 

dependence of the absorption coefficient on the photon energy, introducing a so-called sub-

bandgap tail which can be characterized by the sub-gap tail energy ESGT [9]. The ESGT can be 
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extracted from a fit of a WLR spectrum, making this parameter also accessible by real-time 

analysis [9].  

It has previously been shown by a combination of real-time WLR and energy-dispersive XRD 

(EDXRD) that during the deposition of Cu-Se on a Cu-In-Ga-Se film (i.e., during the second 

stage of the 3-stage CIGSe co-evaporation process), the ESGT decreases shortly before the film 

becomes Cu-saturated ([Cu]/([In]+[Ga])=1) [9]. Additionally, it is known from real-time 

EDXRD measurements during CIGSe coevaporation that shortly before the film becomes Cu-

saturated, planar defects in the CIGSe structure start to annihilate [6,10]. These results suggest 

a causality between these two observations. Whether this is really the case will be analyzed in 

the following. 

Fig. 1 shows the experimental setup that allows to measure XRD and WLR in-situ during 

CIGSe deposition. A relative ratio of the Se to metal evaporation rates nominally > 3 was 

used in all processes.  

 

Figure 1: Schematics of the coevaporation chamber for in-situ EDXRD and WLR 

measurements, attached to the synchrotron source BESSY (providing the polychromatic X-

ray beam). See Ref. 9. 
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In the WLR data for a process with 530°C during the second and third stage (330°C in the 

first stage) shown in Fig. 2a, pronounced interference fringes are visible, which are caused by 

the superposition of the reflection at the sample surface and the interface of the CIGSe layer 

with the molybdenum back contact. For the measurement, white light from a halogen lamp is 

focused on the substrate during film deposition. The reflected spectra shown in Fig. 2a were 

recorded by a Si-CCD and an InGaAs diode array with a time-resolution of one spectrum per 

second. Each spectrum was evaluated by fitting a calculated reflection spectrum to the 

measured spectrum. From the fit parameters the evolution of film roughness, the band gap and 

the sub-gap tail energy (ESGT) were extracted. (For further details on the method see Ref. 9.) 

The vertical lines in Fig. 2a marked 1 to 3, indicate (1) the beginning of the second process 

stage (Cu-Se deposition) and (2) the third process stage (In-Ga-Se deposition), as well as (3) 

the start of the cool down.  

 

 

Figure 2: Real-time analysis of optical and structural properties of a Cu-In-Ga-Se film during 

film deposition around the transitions from Cu-poor ([Cu]/([In]+[Ga])<1) to Cu-rich 

([Cu]/([In]+[Ga])>1) and back from Cu-rich to Cu-poor composition. (a) WLR spectra 
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recorded with a time resolution of 1 spectrum per second (at 530°C substrate temperature). 

The vertical lines mark (1) the start of the Cu-Se deposition, (2) the start of the final In-Ga-Se 

deposition, and (3) the end of the deposition process. For the data of the complete process, see 

Ref. 9. (b) EDXRD recorded simultaneously with the WLR data in a. The data collection was 

interrupted at around 140 min process time for 15 min owing to an electron injection at the 

synchrotron storage ring.  (c) Sub-band tail energy extracted from WLR. (d) Evolution of 

planar defect signal extracted from EDXRD data recorded during CIGSe deposition at 420°C 

substrate temperature. For more details, see Refs. 6 and 10. (e) Intensity of the Cu-Kα 

fluorescence signal extracted from the same spectra as the planar defect signal in d.  

 

Simultaneously to the WLR data, real-time EDXRD datasets were recorded, which are 

depicted in Fig. 2b. By using a polychromatic synchrotron X-ray source, EDXRD and X-ray 

fluorescence data can be acquired within a single spectrum recorded by means of an energy-

dispersive detector during CIGSe film deposition [11]. The EDXRD peaks in Fig. 2b show 

the phase evolution from -(In,Ga)2Se3 to -Cu(In,Ga)5Se8, -Cu(In,Ga)3Se5, and α-

Cu(In,Ga)Se2 during Cu deposition. (For further details on the phase evolution, see Refs. 9, 

11, and 12. During the Cu-rich ([Cu]/([In]+[Ga])>1) phase of the three-stage process, a Cu2-

xSe diffraction peak can be identified. The moment in time of the Cu saturation can also be 

identified by a strong increase of the intensity of the Cu-Kα fluorescence signal (Fig. 2e), 

which is explained by the formation of Cu-Se on the growing film surface [13]. By comparing 

Figs. 2a and b, it can be seen that the phase transformations observed by EDXRD are related 

to the changes in the evolution of the WLR fringes [9]. The average [Ga]/([Ga]+[In]) ratio in 

the final Cu(In,Ga)Se2 film is 0.3, with a double gradient and a minimum [Ga]/([Ga]+[In]) 

ratio of 0.15, approximately 0.5-0.7 µm below surface. 
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The subgap-tail energy extracted from a fit of the WLR data is depicted in Fig. 2c. The figure 

shows a decrease of ESGT shortly before the point of Cu saturation is reached. No ESGT values 

are shown for the period where the composition of the thin film is Cu-rich, because the WLR 

data is affected by the presence of the secondary Cu-Se phase. When the thin film 

composition becomes Cu-poor ([Cu]/([In]+[Ga])<1) again during the third process stage, the 

ESGT raises again to its original value. 

With increasing Cu content, the intensity of the XRD signal associated with planar defects of 

the {112} lattice planes also decreases. This phenomenon is illustrated in Fig. 2d for a 

different process than in Figs. 1 a and b with lower substrate temperature (420 °C) and a more 

pronounced defect signal. The planar defect signal vanishes abruptly at the beginning of the 

Cu-saturated stage, as determined by the increase of the Cu-Kα fluorescence signal (Fig. 2e). 

Contrary to the ESGT value, however, the XRD planar defect signal does not increase again 

when the thin film composition becomes Cu-poor again.  

The fact that the ESGT returns to its previous value during the third stage of the deposition 

process while the planar defect XRD signal remains at noise level shows that the change of 

the ESGT is not connected to the decrease of planar defects of the {112} lattice planes. The 

mirror-inverted development of the ESGT shortly before and after the Cu-saturation point 

suggests a composition dependency. A possible explanation for this behavior could be that the 

increase of ESGT is caused by point defects, which can be expected to become more numerous 

as the composition is more distant from the point of stoichiometry. While the annihilation of 

the planar defects seems to be non-reversible when changing the composition back to Cu-

poor, point defects can be expected to be re-introduced in the CIGSe structure more easily, 

due to a low formation enthalpy and migration barrier of Cu vacancies [14].  

The measurements reported in the present Section show exemplary how the combination of 

in-situ analysis methods can be used to investigate possible correlations of structural defects 
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with optoelectronic properties. The following Section provides insight into ex-situ, structural 

analyses of CIGSe thin films and powder specimens. 

 

 

3. Structural properties of Cu(In,Ga)Se2 thin films 

For the analysis of crystal structures within thin-film materials, XRD is often the first choice. 

Refs. 15 and 16 give on overview of corresponding measurements using Bragg-Brentano or 

grazing-incidence (GI-XRD) configurations. When dealing with thin-film materials 

containing unknown phases, the investigation of crystal structure of the contained phases by 

Rietveld [17] or LeBail [18] refinement methods of the XRD or GI-XRD data (using possible 

solutions) is a very complex task; in some case, the refinement may even fail.  

Instead, it is recommended to first determine phases (and their crystal structures) in powder 

samples from the same material systems. With the obtained crystal structures from powder 

diffraction experiments, refinement of the XRD data acquired on thin films often results in 

unambiguous solutions for the crystal structures contained in the thin films.  

In addition, powder samples are also ideal for neutron scattering experiments, for which larger 

sample volumes (substantially larger than in thin films) are favored. From neutron scattering, 

it is possible to gather information on lattice-site occupations in crystal lattices and thus to 

conclude on favorable point defects. More specifically, the average neutron scattering lengths 

of lattice sites are changed by the presence of point defects in the lattice (e.g., vacancies or 

antisite defects) [15].  Stephan et al. [19,20] investigated defect concentrations with structural 

origin in nonstoichiometric CuInSe2 and CuGaSe2. These authors found that while in Cu-poor 

CuInSe2, VCu, CuIn, and InCu antisite defects are the most frequent ones, the dominant point 

defects in Cu-poor CuGaSe2 are Gai and VCu. Stephan et al. [21] investigated point defects in 

CuInSe2 also in powder obtained by scratching off CuInSe2 thin films from Mo/glass 
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substrates. When studying the average neutron scattering lengths of Cu 4a and In 4b sites in 

CuInSe2 containing / not containing Na, these authors show that in the presence of Na, Cu-

poor CuInSe2 thin films do not exhibit CuIn antisite defects at high concentrations but rather 

VIn. The absence of high concentrations of antisite defects in (Cu-poor) CuGaSe2 and Na-

containing CuInSe2 was interpreted in terms of a high structural ordering [20,21]. 

Moreover, the presence of Na during growth was reported to affect the preferential orientation 

in polycrystalline Cu(In,Ga)Se2 thin films (see, e.g., Ref. 22). The following study was 

conducted in order to shed more light on this issue. We emphasize that the results shown 

below were obtained on CuInSe2 thin films from a low-temperature, three-stage growth 

process (300°C during the In-Se deposition in the first stage and 480°C during the Cu-Se and 

In-Se deposition in the second and third stages). The CuInSe2 layer was deposited in the same 

process for all samples, which therefore have nominally identical thickness.  Na was 

introduced by diffusion from the soda-lime substrate, by a NaF precursor (thicknesses of 6 

and 12 nm) deposited on the Mo/glass substrate (using a SiOxNy barrier on the glass to 

prevent Na diffusion), or by NaF post-deposition treatment (PDT) at 480 °C (also using a 

SiOxNy barrier on the glass) with a Se background pressure in the chamber. Figure 3 shows 

the pole figures in {110} projection obtained by XRD and showing the characteristics of the 

preferred orientation in the CuInSe2 thin films. All investigated films exhibit a preferred 

orientation in <110>/<201> direction. However, the magnitude of the film texture (given in 

multiples of random distribution) differ substantially and depend on the way of how Na was 

introduced (and presumably on the corresponding available Na during growth of the CuInSe2 

layer or during the PDT). It is apparent that Na diffusion from the soda-lime glass results in 

the strongest <110>/<201> texture (Figure 3a). Simply applying a Na diffusion barrier 

between glass and Mo leads to a very weak preferential <110>/<201> orientation (Figure 3c), 

which is not substantially improved by adding Na via PDT (Figure 3b) or via a 6 nm thick 
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NaF precursor layer (Figure 3d). Only when increasing the thickness of the precursor layer to 

12 nm, a strong <110>/<201> texture is obtained.   

 

Figure 3: Pole figures in {110} projection, extracted from XRD measurement of CuInSe2 thin 

films into which Na was incorporated using different recipes. The CuInSe2 layers were grown 

at 480 °C using a three-stage process. (a) Na diffusion from the soda-lime glass, (b) Na 

incorporated by a NaF post-deposition treatment at during sample cool-down right after 

CuInSe2 deposition starting at 480 °C, (c) Na diffusion from the soda-lime glass impeded by a 

diffusion barrier layer (no Na, reference), (d) and (e) use of NaF precursor layers with 

thicknesses of 6 and 12 nm on top of the diffusion barrier layer. 

 

Although it was not possible to conclusively relate the obtained film textures to the used 

method of Na introduction, the XRD results shown in Fig. 3 are in good agreement with the 

ones provided by D. Rudmann [23], who studied the preferred orientation of CIGSe thin films 
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deposited at low substrate temperature (450 °C), however, only by comparing peak intensities 

obtained by XRD θ-2θ scans. A direct link between the preferential orientations in the 

CuInSe2 (or Cu(In,Ga)Se2) layers and the device performance of corresponding solar cells has 

been provided by Contreras et al. [24] for CIGSe grown at elevated temperatures of about 580 

°C, showing that CIGSe absorber layers with preferential <110>/<201> orientations 

outperform those with <221> texture owing to lower densities of nonradiative recombination 

centers.  

In the following Section, advanced approaches for the analysis of surfaces and interfaces in 

the Cu(In,Ga)Se2 solar-cell stack are provided. 

 

4. Interfaces and surfaces  

In order to reveal the (depth-resolved) chemical and electronic structures of surfaces and 

interfaces, a combination of non-destructive techniques, i.e., x-ray photoelectron spectroscopy 

(XPS) and soft x-ray emission spectroscopy (XES), deliberately varying the probing depth, as 

well as ultraviolet photoelectron spectroscopy (UPS) and inverse photoemission (IPES), 

probing occupied and unoccupied density of states can be employed (see Ref. 25 for an 

overview). In the following, a short review of our findings on In2S3 deposited on the CIGSe 

absorber by thermal co-evaporation of elemental indium and sulfur at elevated temperature 

(i.e., 200°C) is presented to demonstrate how powerful this approach is. For higher 

conversion efficiencies and to facilitate industrial scale large-area production, it is desirable to 

replace the CdS buffer layer in the CIGSe-based device structure with a non-toxic, more 

transparent buffer, and the conventionally used chemical bath buffer deposition with a 

technique suitable for in-line processing. For an insight-driven buffer layer optimization, a 

detailed knowledge of the chemical and electronic properties of the (buried) buffer/absorber is 

a prerequisite. In the present chapter, we provide as an example an extensive analysis of the 
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“In2S3”/CIGSe interface structure in unprecedented detail [26,27,28,29,30]. For more 

specifics (in particular with respect to details on the preparation and performance of the 

studied CIGSe absorbers), we refer to the original publications [26,27,29]. 
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Figure 4: XPS survey spectra of In2S3/CIGSe samples with increasing In2S3 buffer layer 

thickness (1/64 → 1/1). For comparison, the spectra of a bare CIGSe absorber (bottom) and a 

1/2 In2S3/Mo reference sample (red solid line) are also shown.  

 

Fig. 4 shows the XPS survey spectra of the “In2S3”/CIGSe samples with varying In2S3 

thickness. “1/1” refers to the standard deposition time (10 min) relevant for solar cells devices 

resulting in a buffer thickness of approx. 80 nm. “1/2” (5 min), “1/8” (75 s), and “1/64” (10 s) 

gives the deposition times (as measure of thickness) related to the standard 10 min. For 

comparison, the spectra of the bare CIGSe absorber and the 1/2 In2S3/Mo reference sample 

are also shown. The spectra are discussed in detail in Ref. [27]. Briefly, we find significant 

differences in the attenuation trends of the Cu-, Ga-, Se-, and Na-related peaks. (Note that the 
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Na stems from the soda-lime glass substrate that diffuses to and accumulates at the absorber 

surface owing to the elevated temperatures during absorber preparation, see, e.g., Ref. 31 and 

references therein for more details.) 

Most prominently, while the Se 3d photoemission line vanishes even for the thinnest (1/64) 

overlayer (indicating a complete coverage of the CIGSe absorber by the deposited In2S3 

buffer), Cu 2p and Na 1s peaks can still be clearly recognized even for the thickest In2S3 

buffer layers. For Cu, this is particularly apparent when comparing the spectra of the two 1/2 

In2S3 buffer layers deposited on CIGSe and Mo, respectively. These observations are 

confirmed by a thorough quantification (see Ref. [26] for details), as depicted in Fig. 5, 

showing the XPS derived [Cu]/[In] ratio. In combination with the composition derived from S 

L2,3 XES measurements (also indicated in Fig. 5; see Ref. [26] for details), it results in the 

following picture: For the “In2S3”/CIGSe samples, we find similar XPS and XES [Cu]/[In] 

ratios for the thinnest and thickest layers, but not for the intermediate “In2S3” layers. The 

expected similar values for the thick samples are in agreement with a homogeneous CuIn5S8 

composition throughout the entire buffer. S L2,3 XES spectra only probe the chemical 

environment of the S atoms, and so only the S-containing CuIn5S8 compound (formed on a S-

free CIGSe) contributes to the respective spectra. Assuming a homogeneous CuIn5S8 

composition (i.e., no Cu gradient), the XES [Cu]/[In] ratio of all “In2S3”/CIGSe samples 

should thus be similar to that of the formed CuIn5S8 buffer compound. The observed deviation 

for low thicknesses is ascribed to the substitution of Se by S in the CIGSe surface/interface 

region during the first stages of the “In2S3” deposition, probably forming a Cu(In,Ga)(S,Se)2 

interlayer. The difference between the XPS and XES [Cu]/[In] ratios for the intermediate 

“In2S3” thicknesses is due to the different information depths of the techniques (more 

precisely: by the inelastic mean free path Cu 2p1 nm [32] of electrons and by the much larger 

attenuation length of photons, here, approx. 30 nm [33]). In the early stages of the “In2S3” 
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deposition, the buffer is thin enough that the (sulfurized) CIGSe side of the “In2S3”/CIGSe 

interface contributes significantly to both XPS and XES spectra, leading to high [Cu]/[In] 

ratios. Then, with increasing thickness, the contribution of the “In2S3”/CIGSe interface region 

is reduced, in particular for XPS. As a result, the XPS-derived ratio rapidly decreases to the 

CuIn5S8 level. Due to the larger information depth the XES spectra, in contrast, still contain a 

substantial contribution from the interface region. This results in a much slower decrease of 

the [Cu]/[In] ratio. 
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Figure 5: Comparison of [Cu]/[In] ratios of an In2Se3 thickness series on CIGSe determined 

from XPS and XES. The [Cu]/[In] ratio of a CuIn5S8 compound is also indicated. 

 

The schematics in Fig. 6 summarizes the findings of our XPS and XES investigations. We 

suggest that, during In2S3 co-evaporation at 200°C on a CIGSe substrate, a CuIn5S8 buffer is 

formed, the absorber surface/interface region is chemically modified by a partial substitution 

of Se by S (probably resulting in a Cu(In,Ga)(S,Se)2 interlayer), and Na and S accumulate at 

the sample surface, possibly forming NaXS islands or a thin film. Acting as a Cu source for 

the CuIn5S8 formation, the CIGSe absorber near the interface will be Cu-depleted. All of these 

chemical “modifications” are expected to have a significant impact on the electronic structure 

at the interface and thus on the overall solar cell performance. 
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In order to specifically address this question, additional UPS and IPES measurements 

were performed. The position of the valence band maximum (VBM) and conduction 

band minimum (CBM) can be derived by linear approximation of the leading edge of 

the UPS and IPES spectrum, respectively. The determined values for the bare CIGSe 

absorber surface and the surface of the standard “In2S3”/CIGSe sample are depicted in 

the bottom-left and top-left panel in Fig. 6. Using these values, we find that the 

electronic surface band gap (Eg
Surf = CBM – VBM) of the CIGSe absorber is (1.51 ± 

0.14) eV, which is significantly larger than the optical bulk band gap (approx. 1.1 eV, 

derived from the external quantum efficiency data in Ref. 34). A band gap widening 

towards the absorber surface was observed for high-efficiency chalcopyrites before 

[35,36,37,38,39] and is consistent with the Cu surface-deficiency found for the here-

studied CIGSe sample [27]. For the standard “In2S3”/CIGSe sample, we find the Eg
Surf 

to be 2.18 (± 0.14) eV, which falls within the wide range of optically-derived bulk 

band gaps reported for In2S3 thin films deposited by dry methods: (1.98 – 2.32) eV in 

Ref. 40 and (2.0 – 2.7) eV in Ref. 41. However, compared to the Eg
Surf value derived 

for a In2S3/Mo reference [2.45 (± 0.14) eV] sample, the electronic surface band gap for 

the “In2S3”/CIGSe sample is reduced. This smaller Eg
Surf is ascribed to the observed Cu 

diffusion from the absorber into the buffer layer and the associated formation of a 

CuIn5S8-like buffer composition [30]. 
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Figure 6, center panel: Simplified scheme of the proposed chemical structure of the surface 

region of a standard “In2S3”/CIGSe sample. Left panels: Presentation of the position of the 

VBM and CBM with respect to the Fermi level (EF) for the surface of the bare CIGSe 

absorber (bottom) and the surface of the standard (1/1) “In2S3”/CIGSe sample. Right panel: 

Scheme of the energy level alignment at the In2S3/CIGSe interface. 

 

Based on the VBM and CBM values and taking interface-induced band bending into 

account (as described in detail in Ref. 29) the energy level alignment at the 

“In2S3”/CIGSe interface was determined to form a cliff-like VB offset (VBO) of -0.5 

(± 0.2) eV and a CB offset (CBO) of +0.2 (± 0.2) eV, i.e., a small spike, which is 

depicted in the right panel of Figure 3. However, due to the significant Cu diffusion 

and the suggested partial S/Se substitution at the absorber surface, the modification of 

the electronic absorber structure by, e.g., the formation of a Cu-deficient 

Cu(In,Ga)(S,Se)2-like absorber phase in the proximity of the “In2S3”/CIGSe interface 

is expected. Both effects lead to an increase of the absorber band gap at the interface 

[42,43] and “smear out” the offsets, as indicated by the red dotted lines. As a result the 

magnitude of the here-derived VBO and CBO can only be considered as upper bounds 

to the true values. 
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 Device simulations [44,45,46] predict that a flat or moderately spike-like CBO does 

not hinder the current transport across the buffer/absorber interface. Thus, the here-

derived CBO upper bound values at the In2S3/CIGSe interface of +0.2 (± 0.2) eV might 

thus still be in agreement with a band alignment suitable for high-efficiency thin-film 

solar cell devices 

This example shows that in order to get a detailed picture of the materials, layer stacks, 

and interfaces, it is important to combine complementary characterization techniques. 

Furthermore, it is crucial to study the relevant interface (i.e., after it is formed) which 

can change due to postdeposition treatments and/or subsequent 

deposition/manufacturing steps, promoting in-system/in-situ experiments. In the 

following section, microscopy approaches for the analysis of Cu(In,Ga)Se2 thin-film 

bulk properties and the corresponding relationships to device performances are 

provided. 

 

5. Microscopic materials and device properties 

In order to detect spatially inhomogeneous distributions of doping or composition (grain-to-

grain or also gradients within individual grains), analysis tools with appropriate spatial 

resolutions are required. Scanning electron microscopy (SEM) and its related techniques can 

provide insight to various materials and device properties at scales ranging from few 10 nm 

up to several cm [47]. Apart from imaging, elemental distributions can be acquired by means 

of energy-dispersive X-ray spectrometry (EDXS). It is often wrongly assumed that EDXS in 

SEM features poor spatial resolutions (of about 1 µm) owing to high excitation volumes, and 

that for characterization of the layers in the Cu(In,Ga)Se2 solar-cell stack in cross-section 

geometry, this technique is not useful. However, when using small acceleration voltages as 

well as (for mapping) low-energy X-ray lines, which exhibit a small mean-free path and thus 
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a small information volume of the emitted X-rays, the corresponding EDXS elemental-

distribution maps represent compositional information even for thin films with very small 

thicknesses (only few 10 nm). Figure 7 gives an example of such EDXS elemental 

distribution maps acquired at 7 kV acceleration voltage, providing the Cd distribution even 

for the 50 nm thin CdS layer. For these EDXS analyses, the cross-section of a ZnO:Al/i-

ZnO/CdS/CIGSe/Mo/glass stack was polished mechanically and by Ar-ion beams (the CIGSe 

layer was coevaporated using a three-stage process).  

 

Figure 7: Cross-sectional SEM image of a ZnO:Al/i-ZnO/CdS/Cu(In,Ga)Se2/Mo/glass stack 

(a), and elemental distribution maps acquired at 7 kV acceleration voltage by EDXS from the 

same identical area, using the (b) Zn-L, (c) In-L, (d) Cd-L, (e) Ga-L, and (f) Mo-L X-ray 
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lines. The false colors represent the net intensities (values provided by the legends in the 

subfigures). These EDXS results show the Ga gradient in the CIGSe layer and the capability 

of this technique to detect the elemental distributions also in the thin (50 nm) CdS layer. 

 

Moreover, electron-backscatter diffraction (EBSD) probes the local crystal orientation and 

symmetry, and thus can provide grain-size and orientation distributions, and also allows for 

categorizing grain boundaries via the misorientations between neighboring grains with spatial 

resolutions ranging from about 10 nm when using electron-transparent lamellae up to several 

cm for bulk specimens [48]. From the recorded EBSD patterns, also microstrain distributions 

within individual grains can be determined [49]. Analysis of local short-circuit currents in 

Cu(In,Ga)Se2 solar cells is possible by means of electron-beam-induced current 

measurements. Applying a corresponding model to EBIC profiles from cross-section 

specimens extracted perpendicular to the substrate provides values for the widths of the space-

charge region wSCR (linked to the doping of the Cu(In,Ga)Se2 layer) as well as for the 

diffusion lengths in the quasi-neutral region of the Cu(In,Ga)Se2 film (related to the lifetime 

of the electrons) [50]. When using a beam-blanker in the microscope as well as a lock-in 

amplifier, the variation in wSCR with varying applied voltage gives insight to the net doping 

density in the Cu(In,Ga)Se2 layer as well as the built-in potential of the diode [51].  

Information on the radiative recombination at high spatial resolutions of down to below 100 

nm is given by cathodoluminescence (CL) measurements. When applied on a cross-section 

specimen of a Cu(In,Ga)Se2 solar cell, the corresponding CL map (Figure 8) represents not 

only the microstructure via CL intensities decreased at grain boundaries, but also the Ga 

gradient via corresponding CL peak shifts. 
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Figure 8: SEM image (a) as well as CL intensity (b) and peak-wavelength distributions (c) 

acquired on the same identical position on a cross-section specimen prepared from a 

ZnO/CdS/CIGSe/Mo/glass stack. The CL measurements were performed at room temperature 

using a DELMIC SPARC system. The colors in subfigure c agree well with the band-gap 

energies expected from the local [Ga] values (blue: about 1.3 eV, yellow: about 1.2 eV, red: 

about 1.15 eV). 

 

This peak shift becomes more apparent when plotting the position on the cross-section as a 

function of the peak wavelength (Figure 9). A corresponding distribution of the local band-

gap energy Eg can be calculated from the Ga gradient measured by means of EDXS via Eg(x) 

= (1-x)Eg(CuInSe2) + xEg(CuGaSe2) - bx(1-x), where x=[Ga]/([In]+[Ga]) and b is the bowing 

factor (b = 0.2).  Here, Eg(CuInSe2)=1.04 eV and Eg(CuGaSe2)=1.68 eV [52] were used. It 

can be seen that the CL peak shift perpendicular to the substrate (Fig. 9a) agrees well with the 

corresponding distribution calculated from the Ga gradient (Fig. 9b).  
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Figure 9: (a) CL spectra extracted from the CL spectral image, along a line perpendicular to 

the substrate, and plotted against the distance. This linescan is in very good agreement with 

the distribution of the band-gap wavelength calculated from the Ga distribution measured by 

EDXS (b). 

 

Enhanced microscopic information can be gathered whenever several techniques are acquired 

on the same specimen area.  Examples for such work include combination of EBSD, EBIC, 

and CL investigations in order to determine the recombination velocities at grain boundaries 

and their correlation with the characters of grain-boundary planes [53], and the combination 

of EBSD and scanning probe microscopy in order to study barriers for charge carriers at grain 

boundaries [54]. Recombination velocities and barrier heights for charge carriers at grain 

boundaries together exhibit important input parameters for two-dimensional device 

simulations, which indicate that enhanced recombination at CIGSe grain boundaries is one 

possible origin of the limited open-circuit voltage in the corresponding solar cells [55]. 

A currently interesting research topic is the investigation of inhomogeneous EBIC and CL 

signal distributions in Cu(In,Ga)Se2 thin films when comparing those acquired on adjacent 

grains (the reader is referred to a recent review on this topic, see Ref. 56). These 
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inhomogeneities can limit the open-circuit voltage of the corresponding solar cells [57] and 

can be attributed mainly to local fluctuations in the net doping (present probably due to 

inhomogeneous distributions of charged point defects) and in the lifetime of the electrons 

(which may be, e.g., affected by inhomogeneous distributions of line or planar defects within 

grains, which contribute to enhanced recombination) [56]. These electrical and optoelectronic 

analyses on the sub-micrometer scale are correlated with corresponding macroscopic 

measurements, which are outlined in the following Section.  

 

6. Optical Spectroscopy 

Hyperspectral imaging techniques have the potential to provide information regarding the 

optoelectronic properties of materials and devices with spatial resolution [58,59].  In contrast 

to conventional luminescence spectroscopy measurements where the emitted light is collected 

from a single spot, hyperspectral imaging luminescence offers the possibility to acquire 

spatially-resolved luminescence maps within a single measurement cycle where the whole 

sample is illuminated homogeneously. By doing so, the optoelectronic properties of absorber 

layers and full devices can be mapped by means of photo- and electroluminescence. For 

electroluminescence, a complete device structure is required to inject current. In 

photoluminescence, no contact layers are required and bare absorber layers can also be 

measured with or without functional layers; such analysis allows for the systematic probing of 

radiative recombination rates at the various stages of device fabrication (e.g. bare absorbers, 

absorber/buffer, and completed device) all by means of optical spectroscopy. Luminescence 

images are generally collected with a Si-CCD or InGaAs-based camera depending on the 

spectral region of the emission [60]. To spectrally resolve the images, a tunable filter is 

located in front of the camera. As a result, a set of images can be collected as a function of 
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emission energy, which can be schematically visualized in a data-cube as shown in Figure 

10a. 

As an example, spectrally resolved photoluminescence images for a CIGSe thin film (the 

corresponding solar cells exhibit conversion efficiencies of about 16%) grown by multi-stage 

evaporation [9] can be seen in Figure 10. Data are shown at emission energies of 1.15 eV (Fig 

10b) and 1.00 eV (Fig. 10c). The sample has been illuminated with two 660 nm lasers coupled 

to optical homogenizer units with an illumination power equivalent to 1 sun. The image 

acquired at 1.15 eV shows uniform emission throughout the whole area of the solar cell, 

whereas the image acquired at 1.00 eV clearly shows spatial inhomogeneities. Figure 10d 

gives the PL spectra of the imaged CIGSe solar cell integrated over a bright area (black circle 

in Fig 10c) and over a dark area (red circle in Fig 10c) illustrating the spatial inhomogeneities 

in the PL intensity between the two regions.  To be able to differentiate spatial 

inhomogeneities in different regions of the spectra is a great advantage for advanced analysis 

of the photoluminescence data. For example, the low energy side of the PL spectra can be 

studied to provide useful information about band tailing and electrostatic/potential 

fluctuations (see, e.g., Refs. 61,62). However, this analysis needs to be performed carefully 

since the PL spectra can be heavily distorted due to interference effects [63]. 

In addition to spatial-mapping of the luminescence, the hyperspectral PL data yields 

information regarding quasi-fermi level splitting (when the system is calibrated to detect 

the sample emission in absolute photons [58,64,65]. This is particularly useful under 1 sun 

illumination conditions, as  represents the maximum achievable open-circuit voltage on an 

equivalent device, however, without the need for device completion. All-optical quantification 

of such device parameters is highly-desirable for material and process optimization. For the 

CIGSe device shown in Fig. 10, quantification of from the high energy slope yields 702 
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mV, which is in good agreement with the open-circuit voltage measured on the device of 

about 680 mV.  

 

Figure 10: (a) Schematics representation of the hyperspectral 3D data cube. PL images of a 

CIGSe solar cell at emission energies of 1.15 eV (b) and 1.00 eV (c) (intensity variations in 

the image corners are affected by aberration in the detection optics). (d) PL spectra of 

integrated over the dark and bright areas represented by black and red circles in (c). (e) 

Temperature-dependent PL decay time of a multi-stage, coevaporated CIGSe absorber layer.  

 

An additional optical spectroscopy technique that is useful for characterizing CIGSe 

absorbers and devices is time-resolved photoluminescence (TRPL). In general, TRPL is used 

to study carrier dynamics and quantify absorber quality, with the minority carrier lifetime τn 

commonly reported from the characteristic decay time of the PL emission  τPL. However, 

interpreting the PL decay as the minority carrier lifetime can by controversial in CIGSe 
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[66,67,68] as the PL decay is also affected by mechanisms such as charge-carrier trapping and 

degradation. Additionally, graded band structures further complicate interpretation of the PL 

decay time as carrier drift and surface-related recombination mechanisms are quite sensitive 

to the absorber energy band structure. 

To verify the origin of the characteristic PL decay time as well as minority carrier lifetime 

in CIGSe, we use a combination of temperature-dependent TRPL and quantitative PL imaging 

data. First, temperature dependent TRPL is used to verify the rate-limiting mechanism of the 

PL decay. The characteristic PL decay time for a CIGSe absorber (the corresponding solar 

cells exhibit conversion efficiencies of about 16%) grown by multi-stage evaporation [66] is 

shown in Fig. 10e between 100 and 400 K. For this absorber, room-temperature PL decay 

times of about 80 ns are measured, with a temperature dependence of τPL ∝ T-1.1; this behavior 

is in excellent agreement with the expected-temperature dependence of SRH-recombination 

[66]. In contrast, a significantly stronger temperature-dependence of the PL decay time may 

be the result of minority carrier-trapping [66,67,68] or sample degradation [67]. In the case of 

minority carrier-trapping, the PL decay time cannot be interpreted as the minority carrier 

lifetime. To investigate further the minority carrier lifetime in CIGSe – in cases where the PL 

decay time does not reflect recombination or to further verification of the minority carrier 

lifetime is needed – the steady-state PL yield can be used, obtained from the quantitative PL 

imaging previously described. The value of τn can be estimated from the internal PL 

efficiency ηPL in low-injection from τn = ηPL/Bp0, where B is the radiative coefficient and p0 is 

the absorber doping [41]. For the CIGSe absorbers shown in Fig. 10d, the external PL yield of 

0.2% is the result of a minority carrier lifetime of about 400 ns, which is in good agreement 

with TRPL data on these absorbers – demonstrating that the long PL decay time measured is 

indeed related to the minority carrier lifetime. In general, for the PL decay time to be 
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interpreted as the minority carrier lifetime, the TRPL, the steady-state PL efficiency, and 

temperature-dependence of the PL decay need to be in good agreement.  

 

 

7. Summary and Outlook 

The present overview article provided insight into in-situ growth monitoring of CIGSe 

absorber layers as well as various approaches applied at HZB for studying bulk properties and 

surfaces of individual layers and also completed solar-cell stacks, on scales from mm down to 

nm. It was shown that the combination of in-situ analysis methods can be used to investigate 

correlations of extended structural defects (such as stacking faults) with optoelectronic 

properties. Complementary, ex-situ analysis of structural properties via X-ray or neutron 

diffraction techniques gives the means to confirm (micro)structural film properties and to 

obtain information on point defects, while a combination of XPS, XES, UPS, and IPES allows 

for analyzing chemical and electronic structures of surfaces and interfaces in solar-cell stacks. 

In order to detect elemental distributions in the solar-cell stack or fluctuations in the 

optoelectronic properties of CIGSe absorber layers, electron microscopy can give 

corresponding insight, which is complemented by optical spectroscopy providing information 

on, e.g., charge-carrier lifetimes. In spite of the diverse information already accessed by the 

methods described in the present work, still, additional work involving, e.g., materials and 

multidimensional device modelling performed by external partners is needed in order to assist 

the correlation of materials properties with the device performance.      
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