
research papers

386 https://doi.org/10.1107/S1600576718001607 J. Appl. Cryst. (2018). 51, 386–394

Received 1 September 2017

Accepted 26 January 2018

Edited by Th. Proffen, Oak Ridge National

Laboratory, USA

Keywords: neutron imaging; quantification;

neutron scattering; Monte Carlo methods.

A Monte Carlo approach for scattering correction
towards quantitative neutron imaging of
polycrystals

M. Raventós,a,b* E. H. Lehmann,a M. Boin,c M. Morgano,a J. Hovind,a R. Harti,a,b

J. Valsecchi,a,b A. Kaestner,a C. Carminati,a P. Boillat,a P. Trtik,a F. Schmid,a

M. Siegwart,a D. Mannes,a M. Strobla and C. Grünzweiga*

aLaboratory for Neutron Scattering and Imaging, Villigen, Switzerland, bUniversity of Geneva, Geneva, Switzerland, and
cHelmholtz Zentrum Berlin für Materialien und Energie, Berlin, Germany. *Correspondence e-mail:

marc.raventos@psi.ch, christian.gruenzweig@psi.ch

The development of neutron imaging from a qualitative inspection tool towards

a quantitative technique in materials science has increased the requirements for

accuracy significantly. Quantifying the thickness or the density of polycrystalline

samples with high accuracy using neutron imaging has two main problems: (i)

the scattering from the sample creates artefacts on the image and (ii) there is a

lack of specific reference attenuation coefficients. This work presents

experimental and simulation results to explain and approach these problems.

Firstly, a series of neutron radiography and tomography experiments of iron,

copper and vanadium are performed and serve as a reference. These materials

were selected because they attenuate neutrons mainly through coherent (Fe and

Cu) and incoherent (V) scattering. Secondly, an ad hoc Monte Carlo model was

developed, based on beamline, sample and detector parameters, in order to

simulate experiments, understand the physics involved and interpret the

experimental data. The model, developed in the McStas framework, uses a priori

information about the sample geometry and crystalline structure, as well as

beamline settings, such as spectrum, geometry and detector type. The validity of

the simulations is then verified with experimental results for the two problems

that motivated this work: (i) the scattering distribution in transmission imaging

and (ii) the calculated attenuation coefficients.

1. Introduction and motivation

Neutron imaging is a well established technique for nondes-

tructive two-, three- and four-dimensional evaluation of

samples (e.g. Anderson et al., 2009; Strobl et al., 2009;

Kaestner, Mnch et al., 2011). Thermal and cold neutrons have

wavelengths of the order of inter-atomic lattice distances,

which are suitable for diffraction applications and combina-

tions of imaging and diffraction (Santisteban et al., 2002;

Peetermans et al., 2014; Woracek et al., 2017; Cereser et al.,

2017). As for standard neutron transmission imaging, identi-

fication of materials with different attenuation is based on the

Beer–Lambert law:

Ið�Þ

I0ð�Þ
¼ exp½��totalð�Þt�; ð1Þ

where I0ð�Þ is the initial intensity of the beam, Ið�Þ is the

transmitted intensity, �totalð�Þ is the attenuation coefficient of

the material and t is the thickness of the sample in the beam

direction. The attenuation coefficient is defined as

�totalð�Þ ¼
NA�

A
�totð�Þ; ð2Þ
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where NA is the Avogadro constant, � is the mass density of

the material, A is the atomic mass and �totð�Þ is the wave-

length-dependent total microscopic cross section.

To be able to quantify the attenuation of a sample, we

approach two unsolved questions: how to avoid scattered

neutrons adding intensity to the transmission images and how

to obtain adequate cross section values.

In the first place, classic neutron imaging considers the

transmission through the sample and thus measures the

attenuation coefficient [equation (2)] as a line integral through

the probed material. Neutrons originating from coherent,

incoherent, elastic and inelastic scattering are considered as

absorbed. However, a portion of the neutrons scattered close

to the forward direction are bound to be captured by the

transmission detector, thus distorting the results with respect

to the Beer–Lambert law. This poses a challenge for quanti-

fication, which has been previously tackled using scattering

correction tools (Kardjilov et al., 2005; Hassanein et al., 2005),

calibration (Pekula et al., 2005), wavelength selection (Treimer

et al., 2006) and collimators (Tremsin et al., 2011). Scattering

correction tools have been used successfully for water quan-

tification, although detailed information on the sample

geometry and composition is required, and the choice of

correction parameters may introduce a bias in the measure-

ment. Calibration of the sample gives an estimate of the

expected attenuation of a sample but does not solve the

scattering problem. Selecting wavelengths longer than the

Bragg cut-off of the sample avoids only Bragg scattering

contributions and it usually requires selecting only the coldest

neutrons of the beam, leading to a trade-off between quanti-

tativeness and neutron intensity, and hence experimental time.

Finally, collimators can be effective for scattering removal, but

they have to be placed between the detector and sample and

have an impact on the beam collimation and geometry.

In the second place, the expected cross section value of a

sample is often not trivial to compute. The absorption and

incoherent cross sections depend on the target nucleus, while

the coherent scattering cross section depends also on the

crystal structure and microstructure of the sample material.

Unfortunately, wavelength-dependent cross section data in

the cold region are rare in nuclear databases. These databases

were created to serve as reference for criticality considerations

and operation of power plants, in which the cold region is

irrelevant (Otuka et al., 2014). Therefore, reference cross

section data which are precise and representative of the

wavelength spectrum of various available neutron imaging

beamlines are required.

Imaging beamlines at PSI are represented in the thermal,

thermal–cold and cold ranges by NEUTRA (Lehmann et al.,

2001), ICON (Kaestner, Hartmann et al., 2011) and BOA

(Morgano et al., 2014). Fig. 1 shows the scheme of a typical

neutron imaging beamline.

With a beamline layout like the one described above, the

maximum spatial resolution can be achieved with the sample

as close as possible to the detector (Lehmann et al., 2007),

equivalent to Pos. A in Fig. 1. Unfortunately, there is a trade-

off between the highest possible spatial resolution and the

quantification of the transmitted signal with state-of-the-art

neutron instruments. This is because the closer the detector is

to the sample, the larger is the angle of the scattering cone

covered by the detector and in particular by the sample

projection (Fig. 1).
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Figure 1
Schematic layout of a neutron imaging beamline. The depicted
components are key to defining the input parameters of the Monte
Carlo model. Neutrons travel from the moderator surface (M1�M2)
through the pinhole with diameter D. L1 is the distance between the
moderator and the pinhole and L2 is the distance between the pinhole
and the sample. The yellow shadow represents the slightly divergent
neutron beam which illuminates the sample and the pink shadow the
neutrons scattered from the sample. A sample in position A (Pos. A) is in
close contact with the detector, while a sample in position B (Pos. B) is at
200 mm distance from it. As an example, the dimensions for the
NEUTRA beamline are (in mm) M1 ¼ 155, M2 ¼ 85, L1 ¼ 1654,
L2 ¼ 5438, D ¼ 20.

Figure 2
(a) Transmission images of Cu, Fe and V in Pos. A (cf. Fig. 1). (b)
Transmission images of Cu, Fe and V in Pos. B. (c) Bar plot with the
measured intensity averaged over the whole samples. All samples have
10 mm thickness. The increase in measured intensity for Pos. A with
respect to Pos. B for Cu, Fe and V is 11.5, 12.9 and 10.6%, respectively.
Samples were measured at the ICON beamline. All the images have been
open-beam corrected.



Fig. 2 shows the results of radiography experiments

performed at ICON. We choose three different sample shapes

to show that the difference in transmission signal (from Pos. A

and Pos. B) is predominantly not geometry dependent. The

samples are a Cu cylinder with 25 mm diameter and 10 mm

thickness, an Fe slab of 28 � 28 � 10 mm, and a V cylinder

with 15 mm diameter and 10 mm thickness.

The detection system is composed of a 6LiF–ZnS scintillator

with 200 mm thickness in combination with an Andor NEO

sCMOS camera with 2560� 2160 pixels and a 50 mm lens. The

field of view was 112 � 94 mm, resulting in a pixel size of

44 mm. The samples were measured with an exposure time of

15 s. All the images presented in Fig. 2 have been dark-current

and open-beam corrected.

The results of these experiments show the difficulties in

correctly measuring polycrystalline structures, even with

simple geometries. Figs. 2(a) and 2(b) show transmission

images of Cu, Fe and V with samples at Pos. A and Pos. B,

respectively. The pixel intensities are scaled between 0.3 and

0.6 for a better visualization of the scattering influence. A

quantitative comparison of the mean transmission values is

made in Fig. 2(c), showing a deviation larger than 10%

between the two measurements. The details of polycrystalline

sample scattering, and in particular how it affects neutron

imaging, will therefore be introduced to address these chal-

lenges. In x2 we describe the underlying physics and neutron

instrument parameters which constitute the basis for the

Monte Carlo model. Subsequently, we describe in detail how

the model is built and what it is capable of. Finally, a validation

of the model by comparison with radiography and tomography

experiments and a discussion of the results are given.

2. Theory

2.1. Scattering cross sections

Polycrystalline materials have an ordered periodic structure

at the atomic level, which allows diffraction techniques to

study their properties. Correspondingly, in neutron transmis-

sion experiments the structure of polycrystals should be taken

into consideration if one aims to quantify the attenuation of

the sample. To show the importance of these considerations,

this work compares the accuracy of attenuation coefficients

calculated with the hypotheses of amorphous material and

structured material. The web site of the National Institute of

Standards and Technology includes the Neutron activation and

scattering calculator (https://www.ncnr.nist.gov/resources/

activation/) tool, which offers a quick way of evaluating the

attenuation of amorphous materials for a monoenergetic

neutron beam. The calculation of the neutron attenuation

coefficient for this tool follows

�total ¼ ½�coh þ �incoh þ �absð�Þ��A; ð3Þ

where �coh and �incoh are the coherent and incoherent cross

sections of the nucleus, respectively, �absð�Þ is the absorption

cross section, and �A is the atomic density. In equation (3) we

observe the wavelength dependence of the absorption cross

section, whereas the total coherent and incoherent scattering

contributions to the attenuation coefficient are assumed to be

constant. The cross sections are defined as

�absð�Þ ¼
�2200

abs

1:798 Å
�; ð4Þ

�coh ¼ 4�hbi2; ð5Þ

�incoh ¼ 4�ðhb2
i � hbi2Þ; ð6Þ

where � is the neutron wavelength, �2200
abs is the absorption

cross section for thermal neutrons at a wavelength of � ¼
1.789 Å (equivalent to a neutron speed of v ¼ 2200 m s�1),

and b is the scattering length of the nucleus.

The calculation of the attenuation coefficient taking into

account the structure of the material is

�total ¼ ½�cohSel
cohð�Þ þ �incohSel

incohð�Þ þ �inel
totalð�Þ þ �absð�Þ��A;

ð7Þ

where the scattering functions S describe the influence of the

spatial arrangement of the nuclei and their corresponding

dependence on the neutron wavelength and �inel
totalð�Þ is the

total inelastic scattering cross section. The first component of

equation (7) accounts for the coherent elastic component of

the scattering cross section and is calculated by means of the

structure factor Fhkl and the interplanar distance dhkl for every

set of planes in the crystal (Fermi & Marshall, 1947):

�cohSel
cohð�Þ ¼

�2

2V0

X2dhkl <�

dhkl¼0

jFhklj
2dhkl: ð8Þ

where V0 is the unit-cell volume. Note that this equation

assumes the crystal to be a powder-like assembly of small

crystal grains with random orientation. If this assumption does

not apply, for example because of texture, orientation-

dependent weighting factors have to be added (Woracek et al.,

2017). The scattering function Sel
incoh of equation (7) accounts

for the elastic contribution of the incoherent scattering, based

on the assumption of the thermal motion of the nuclei (Debye,

1913; Waller, 1923). The complete formulation of Sel
incohð�Þ and

�inel
totalð�Þ is given by Granada (1984) and Vogel (2000). It was

later implemented by Boin (2012) in the nxs program library

for cross section calculations, which we use in this work. In this

model, the coherent and incoherent scattering, elastic and

inelastic scattering, and absorption are included, taking into

account the crystalline structure of the material and the

phonon contribution assuming a powder polycrystal. A

March–Dollase model for texture characterization is included

in the nxs program library, although it has not been used in this

work. Magnetic interactions are not considered.

2.2. Input parameters of the model

The nxs library makes the neutron cross section calculation

available for Monte Carlo simulations and as a cross section

plotting tool: the nxsPlotter. In the following, a Monte Carlo

simulation for neutron imaging experiments has been realized,

paying attention to the most important influences on the
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measured and simulated results. These are visualized in Fig. 3:

(a) the incident neutron spectrum, (b) the sample–neutron

interaction and (c) the absorption probability of the scintil-

lator screen. Notice that this model requires the wavelength

spectrum of the beamline.

The curves for the different scintillators have been calcu-

lated from the thickness of the screen, from the binder–scin-

tillator ratio and by considering a linear behaviour of the

absorption cross section (either 6Li or natural Gd) with

respect to the thermal wavelength (Table 1).

Using the data in Fig. 3, an estimation of the attenuation

coefficient value for white beam neutron imaging can be

obtained, by calculating the mean of the attenuation coeffi-

cient weighted by the neutron spectrum:

� ¼

R
’ð�Þ�ð�Þ d�R
’ð�Þ d�

: ð9Þ

For a better understanding of the different attenuation

contributions, Fig. 4 shows the individual components of the

macroscopic cross section calculated for Cu, Fe and V on

different beamlines. The different contributions have been

calculated using the nxsPlotter [which is based on equation

(7)] and the beamline spectra to obtain the mean of the cross

sections weighted [equation (9)] by the neutron spectrum.

Fig. 4 shows the relevance of the different scattering

mechanisms for Fe, Cu and V on beamlines with different

spectra. Because V has a very small coherent cross section

value, the coherent cross section does not contribute signifi-

cantly to the total attenuation coefficient. For that reason, no

Bragg edges are seen in the attenuation spectrum of V

(Fig. 3b). For coherent scatterers (Fe and Cu), neutrons with

wavelength longer than 2dhkl cannot be scattered coherently

and elastically by the crystal lattice, so the attenuation coef-

ficient for both Fe and Cu drops shortly after 4 Å (Figs. 3b and

4). Fig. 4 also illustrates why it is important to take the

wavelength-dependent coherent cross section into account if

one aims to quantify the transmitted signal. On a thermal

beamline, Fe is the most attenuating, followed by Cu and then

V. On a cold beamline, all three have similar attenuation

values. Finally, when the Be filter is used, and hence only

neutrons with wavelengths larger than 4 Å contribute, the

order is reversed (V is the most attenuating, then Cu and then

Fe). The Be filter unit is normally placed between the pinhole
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Table 1
Scintillator composition and total neutron absorption at 1.8 Å.

Air
(mm)

Binder
(mm)

ZnS
(mm)

6LiF/Gadox
(mm)

Absorption
at 1.8 Å

6LiF–ZnS 50 mm 10.5 12 15.5 12 0.07
6LiF–ZnS 100 mm 21 24 31 24 0.13
6LiF–ZnS 200 mm 42 48 62 48 0.25
Gadox 10 mm 1 0.6 – 8.4 0.62
Gadox 20 mm 2 1.2 – 16.9 0.86
Gadox 30 mm 3 1.8 – 25.3 0.95

Figure 4
Attenuation coefficients for Fe, Cu and V computed using nxsPlotter data
and the spectra from the different beamlines. They are split into the
following contributions: coherent elastic, coherent inelastic, incoherent
elastic, incoherent inelastic and absorption. The bar diagrams show the
behaviour of Fe, Cu and V in a thermal spectrum (NEUTRA), thermal
and cold (ICON), cold (BOA), and cold with beryllium (Be) filter. The Be
filters out neutrons below 4 Å, thus leaving only the cold tail of the
neutron spectrum and greatly reducing the effect of Bragg scattering.

Figure 3
(a) Wavelength spectra of three imaging beamlines at PSI: NEUTRA
(thermal), ICON (thermal–cold), BOA (cold). (b) Attenuation coeffi-
cients for Fe, Cu (with Bragg edges) and V computed with nxsPlotter. (c)
Neutron absorption probability of different scintillator compositions and
thicknesses.



and the sample and removes from the beam neutrons with

wavelength shorter than 4 Å. In the following we introduce

the beamline parameters, the nxs library and the detector

behaviour into the Monte Carlo model.

3. The Monte Carlo model

The Monte Carlo model has been coded using McStas 2.a

(Lefmann & Nielsen, 1999), a neutron ray-tracing package

used to simulate neutron instruments and experiments. The

dimensions of the beamline and the position and geometry of

different components are those depicted in Fig. 1. They are

represented by virtual components, many of them available as

generic modules in the McStas library. The moderator surface

is a Source_gen component which uses

the spectral data of the different

beamlines as input. The pinhole is a

circular Slit component. The sample is a

Sample_nxs component, which follows

the equations defined in x2 and includes

the crystallographic properties of the

samples. The detector is represented by

a modified position sensitive detector

(PSD) which weights the value of every

neutron depending on the probability of

being absorbed by the scintillator,

following the curves of Fig. 3(c).

Sample_nxs is the implementation of

the nxs program library into a McStas

component. The code allows the user to

choose between a cylindrical, slab or three-dimensional

geometry from a given file. To illustrate this description, Fig. 5

shows a three-dimensional snapshot of 1000 neutrons scat-

tering from a Cu sample, together with the relative scattering

intensity measured with a PSD in close contact with the

sample and another one 200 mm downstream. The number of

neutrons in Fig. 5 was chosen in order to provide a good

visualization of the scattering phenomenon; therefore only

1000 neutrons are shown.

The sample-to-detector distance has a large influence on the

fraction of scattered neutrons detected. The smaller the

distance, the larger the scattering angle range covered by the

detector, but in particular also by the projection of the sample

itself. By modifying the PSD monitor component in McStas,

one can obtain data about the incident angle at which scat-

tered neutrons enter the detector during the measurement.

The measured dimension is defined as 2� in Fig. 1, and it can

be estimated from the simulation for the three different

samples of study.

Fig. 6 shows how the scattering from the sample detected in

the transmission detector has bumps in the case of Fe and Cu

which are not present for V. These can be attributed to

Debye–Scherrer rings (Cullity & Weymouth, 1957) arising

from the coherent scattering in Fe and Cu, which are, despite

the spatial smearing, still visible as bumps of intensity for

certain scattering angles in the transmission detector. Note

that the histogram integrates neutrons detected across the

whole surface of the detector, which is 30� 30 mm, and shows

them as a function of 2� (Fig. 1). Transmitted neutrons are not

shown in Fig. 6. In the next section a comparison of the

experimental results and the Monte Carlo simulations is

presented in order to validate the accuracy of the model.

4. Model validation and discussion

In order to validate the Monte Carlo model, we compare the

results of the simulations with experimental results for the

scattering distribution and the tabulated attenuation coeffi-

cients of the materials, which do not yet account for the crystal

structure. We present radiography and tomography results
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Figure 5
(a) McStas simulation of 1000 neutrons scattering from a Cu cylinder of
25 mm diameter and 10 mm thickness. (b) Intensity of the scattered
neutrons detected by PSD1 in contact with the sample with respect to the
open beam. (c) Intensity of the scattered neutrons detected by PSD2 at
200 mm from the sample with respect to the open beam. PSD1 and PSD2
are 200 mm apart, like Pos. A and Pos. B in Fig. 1, but in this case the
detector is displaced, not the sample.

Figure 6
Scattering intensity at the imaging plane coming from the sample as a function of 2� from white
beam radiography simulations with the NEUTRA spectrum (Fig. 3) for Fe, Cu and V in position A.
Notice the peaks arising from coherent scattering in Fe and Cu are not present in the scattering
from V.



obtained at the NEUTRA beamline, i.e. utilizing a thermal

neutron spectrum.

4.1. Scattering from the sample in neutron radiography

While performing neutron imaging experiments, we cannot

avoid detecting the transmitted neutrons like we do in a

simulation, but we can subtract the images acquired in Pos. A

from those in Pos. B (Fig. 1) (Raventós et al., 2017). By doing

so, we can obtain qualitative information on the partition of

neutrons scattered into the additional solid angle covered in

Pos. B. Fig. 7 shows a comparison of the scattered contribution

with the equivalent McStas simulation.

Fig. 7 confirms how standard radiographic images of crys-

talline materials can be affected by scattering contributions, in

this case up to 10% of the incident beam. The simulation is

performed with 109 neutrons at Pos. A and Pos. B. The model

can predict accurately the relative intensity of the scattering at

any given sample-to-detector distance, as can be seen in Fig. 8.

Fig. 8 shows radiographs of three Cu slabs with dimensions

80 � 80 � 2 mm, 100 � 100 � 10 mm and 50 � 50 � 15 mm,

measured at the NEUTRA beamline for sample-to-detector

distances between 4 and 50 mm. One can observe how for

each of the three curves there is a visible decrease in measured

intensity with increasing sample-to-

detector distance, most notably in the

first 15 mm.

The simulation results from Figs. 7

and 8 are in good agreement with the

experimental results, underlining that

our model assumptions and descriptions

are sufficient for this kind of simulation.

4.2. Reference attenuation coefficients
in neutron tomography

Subsequently, tomography was

performed on the three samples at the

NEUTRA beamline with the detector

in Pos. B. The detector in this case was

what we refer to as the Midi-Box

camera setup: a 6LiF–ZnS scintillator

with 100 mm thickness, and an Andor

NEO camera with sCMOS sensor and

2560� 160 pixels using a Nikkor 50 mm

f/1.4. The camera was placed at a

distance from the scintillator that

provided a field of view of 148 �

176 mm and a pixel size of 69 mm. The

three samples were measured simulta-

neously by using the POLYTOM device

(Trtik et al., 2016), which translates the

movement of a single rotation axis to

three different rotation stages enabling

multiple simultaneous tomographic

scans. The exposure time was 15 s per

projection. The tomograms were

reconstructed from 1125 projections
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Figure 8
(a) Experimental and simulated radiographs of three Cu samples with different thicknesses at a
sample-to-detector distance of 4 mm. (b) Normalized intensities averaged over the samples’
indicated region of interest at different sample-to-detector distances.

Figure 7
(a) Subtraction of a transmission image of the Cu sample at NEUTRA in
Pos. B from another in Pos. A. (b) Subtraction of a simulated radiographic
image of the Cu sample at NEUTRA in Pos. B from another in Pos. A. (c)
Radial average of the intensities from experiments and simulations. Pos.
A and Pos. B.



over 360�, with the commercial software octopus 8.9.1 (https://

octopusimaging.eu/). Before reconstruction, standard correc-

tions for dark-current and open-beam normalization were

performed. Data were exported as single-precision floating-

point slices to evaluate the attenuation coefficients measured

in the bulk of the samples.

In order to simulate the tomograms each material was

exposed to 109 neutrons for each of the 360 radiographs over

360� used for the simulated tomography reconstructions, with

a total simulation time of 15 h per tomographic scan.

However, because of computational time constraints, a

Maxwellian approximation of the NEUTRA spectrum was

used for the simulated tomography, instead of the experi-

mental NEUTRA spectrum. This way, the computation time

can be decreased 60-fold, and tomographic simulations can be

performed in a reasonable time.

One can observe in Fig. 9 how the experimental tomograms

show some reconstruction artefacts such as rings and streaks,

probably due to the experimental conditions. On the other

hand, the simulated tomograms show a higher variability of

the voxel value owing to the poor statistics from the compu-

tational constraints, while the rotation axis was known in

advance and no ring artefacts seem to appear. Nevertheless,

both show comparable values for the attenuation in all three

materials.

For the quantitative comparison of the attenuation coeffi-

cients, the NIST calculator value was obtained from the http://

www.ncnr.nist.gov/resources/activation/ using a thickness of

10 mm, a neutron wavelength of 1.798 Å and the nominal

values for density, which are 7.87 g cm�3 for Fe, 8.96 g cm�3

for Cu and 6.11 g cm�3 for V.

The values of the attenuation coefficients using the

nxsPlotter without simulations were calculated following the

same steps as in Fig. 4. In this case, the wavelength-dependent

absorption curve of the 100 mm 6LiF–ZnS thickness scintil-

lator is weighted in the calculation.

The simulation results were obtained from the simulated

tomographic reconstruction using the approximated

Maxwellian spectrum source and with simulated radiographs

using the experimental spectrum source. The latter were

optimized to reduce the statistical uncertainty by simulating

samples with a large surface and a constant thickness of 10 mm

(simulation time 18 h per radiograph). These simulation

values of the attenuation coefficient are compared with the

experimental values, those provided by the NIST calculator

and those calculated with the nxsPlotter in Fig. 10.

Naturally, in contrast to the tabulated values, the measured

and simulated values display a distribution due to statistical

uncertainty and are presented as such in Fig. 10.

The mean values of the attenuation coefficient obtained by

tomography are �Tomo
Cu ¼ 0:94 cm�1, �Tomo

Fe ¼ 1:03 cm�1 and
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Figure 9
Three-dimensional reconstruction of the Cu, Fe and V tomography from
the experiment (top) and the simulation (bottom). The dotted lines
represent the section plane from which the slices underneath have been
extracted and displayed with the same greyscale. The rotation axis for all
cases is vertical with respect to the three-dimensional volumes shown in
this figure.

Figure 10
Comparison of the attenuation coefficients obtained by tomography,
simulated radiography, simulated tomography, NIST and nxsPlotter for
Cu (a), Fe (b) and V (c). For all three graphs the tomography and
simulation distribution values are normalized to the most frequent value.



�Tomo
V ¼ 0:72 cm�1. The spread of the resulting values in

terms of full width at half-maximum (FWHM) is 0.12 for Fe,

0.09 for Cu and 0.04 for V. Differences in FWHM of the

attenuation coefficient among samples are due to variations in

the dimensions and attenuation coefficient of the Fe, Cu and V

samples.

The mean values of the attenuation coefficient obtained by

simulated radiography are �Sim
Cu ¼ 0:93 cm�1, �Sim

Fe ¼

1.09 cm�1 and �Sim
V ¼ 0:72 cm�1. The FWHM for the simu-

lated data is 0.06 for Fe, 0.06 for Cu and 0.06 for V. As can be

seen, here the values of the attenuation coefficient have little

impact on the uncertainty of the measurement, while they

differ from the experimental results where some projections

are more affected than others owing to the shape and

dimensions of the sample and the corresponding projections.

The mean values of the attenuation coefficient obtained by

simulated tomography are �Sim
Cu ¼ 0:93 cm�1, �Sim

Fe ¼

1.11 cm�1 and �Sim
V ¼ 0:71 cm�1. The FWHM for the simu-

lated data is 0.16 for Fe, 0.13 for Cu and 0.18 for V. Given the

spread of the distributions and the fact that they were

performed with a Maxwellian approximation of the spectrum,

we do not recommend this method for the estimation of the

attenuation coefficients.

The values of the attenuation coefficient obtained using the

NIST database are �NIST
Cu ¼ 1:07 cm�1, �NIST

Fe ¼ 1:19 cm�1 and

�NIST
V ¼ 0:72 cm�1.

The values of the attenuation coefficient obtained using

nxsPlotter are �nxs
Cu ¼ 0:94 cm�1, �nxs

Fe ¼ 1:11 cm�1 and

�nxs
V ¼ 0:74 cm�1. The results of nxsPlotter are interpreted as

the value of the attenuation coefficient that one would obtain

from the simulation if the sample were infinitely thin. Since

the samples’ dimensions are in the range of tens of millimetres,

the simulated and experimental attenuation coefficients are

affected by beam hardening, which is not accounted for in the

nxsPlotter calculation. Therefore, the nxsPlotter value will

always give a slightly higher attenuation coefficient value than

the simulation value.

As can be seen, the nuclear nominal values are 13.8%

higher for attenuation in the case of Cu and 15.5% higher in

the case of Fe when compared with the mean value obtained

from tomography. For the simulated radiography, the devia-

tion is 1.1% in the case of Cu and 5.8% in the case of Fe

between mean values. Differences in attenuation values

between the Fe experiment and the simulation are attributed

to the Fe sample being strongly textured. Still, the results show

improvement as reference value when compared to the

nuclear nominal values. If known, texture can be accounted

for in the Monte Carlo model with a March–Dollase factor,

which can be enabled in Sample_nxs.

In the case of V, where coherent elastic scattering and hence

the crystal structure has no impact, the tomography, simulated

radiography, NIST and nxsPlotter values coincide well.

5. Conclusions

Discrepancies between neutron imaging measurements of

standard polycrystalline materials at different sample-to-

detector distances motivated the creation of a Monte Carlo

simulation tool. The model, which includes beamline para-

meters, crystallographic information on the samples, and

scintillator composition and thickness, could reproduce the

correlation between distance and measured deviations on the

basis of scattering effects. When comparing the results from

experiments with simulations, the model appears in good

quantitative agreement with the measurements. Comparing

attenuation coefficients measured in the volume in tomo-

graphy experiments with standard nuclear values often used as

reference values and the Monte Carlo simulations, the model-

based simulation provides values which are more precise for

strong coherent scattering materials like Fe and Cu. For a

material without a relevant coherent elastic scattering

contribution like V, on the other hand, the reference value not

accounting for crystalline structure appears just as precise as a

detailed simulation. The examples underline that for a struc-

tural material like Cu, quantification without accounting for

the crystalline nature of the material and the corresponding

scattering effects can introduce errors significantly larger than

10% in quantification.

As has been shown, if one aims to quantify the transmitted

signal of a Cu sample in close contact with the scintillator and

using the amorphous hypothesis, one will be not only adding

up to 10% of the open-beam signal to the transmission signal

in the form of scattered neutrons, but also using an attenuation

coefficient value as reference which is 13.8% higher than the

real one.

This model has the potential to become a routine modelling

tool for neutron radiography measurements. The strength of

our approach lies in the flexibility of the model with respect to

beamline parameters and detector types, being able to assess

neutron imaging experiments for any instrument and detector

configuration. All previously mentioned custom McStas

component are now available in the McStas-Imaging-Tools

GitHub repository (https://doi.org/10.5281/zenodo.1041731).
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