Data at the end of the Tunnel

Electric control of aligned Spins improves Computer Memory

Researchers from Helmholtz-Zentrum Berlin (HZB) and the French research facility CNRS, south of Paris, are using electric fields to manipulate the property of electrons known as "spin" to store data permanently. This principle could not only improve random access memory in computers, it could also revolutionize the next generation of electronic devices.

This new kind of memory exploits a phenomenon called "tunnel magnetoresistance" or TMR. Two thin layers of a magnetic material are separated from each other by an insulator a mere millionth of a millimetre thick. Even though the insulator does not actually allow electrons to pass through it, some of the charge carriers still manage to sneak from one side to the other, as if by slipping through a tunnel. This is one of their quirky quantum behaviours. Another property it exploits is the intrinsic angular momentum of all electrons, which physicists call "spin". There are two spin states an electron can be in: either "up" or "down".

If most of the spins are oriented the same way in both magnetic layers of this TMR sandwich, then electrons tunnel much more easily than if one magnetic layer has mostly "up" spins and the other has mostly "down" spins. Such a component is used to build memory capable of rapid and repeated data writes, much like conventional memory, but also capable of permanently storing this data.

TMR-based memory known as MRAM has so far required relatively strong magnetic fields to write data, and therefore a lot of energy. As CNRS researchers Vincent Garcia and Manuel Bibes show in their work presented in journal Science, however, this could change. They made their insulator out of the compound barium titanate. HZB researchers Sergio Valencia and Florian Kronast used X-ray absorption spectroscopy (XAS) to study the chemical composition of the magnetic layers of this sandwich.

The scientists can use an electric field to switch the insulator in a way that influences the electron spins in the magnetic layers either side of it, thereby influencing the electron tunnelling as well. Since the insulator keeps the same switched state when all current is removed, this model could be used to build PC memory that draws very little power and still stores data permanently.

Articel in Science, DOI: 10.1126/science.1184028

Ferroelectric control of spin polarization: V. Garcia, M. Bibes, L. Bocher, S. Valencia, F. Kronast, A. Crassous, X. Moya, S. Enouz-Vedrenne, A. Gloter, D. Imhoff, C. Deranlot, N. D. Mathur, S. Fusil, K. Bouzehouane and A. Barthélémy

  • Copy link

You might also be interested in

  • BESSY II: Insight into ultrafast spin processes with femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Insight into ultrafast spin processes with femtoslicing
    An international team has succeeded at BESSY II for the first time to elucidate how ultrafast spin-polarised current pulses can be characterised by measuring the ultrafast demagnetisation in a magnetic layer system within the first hundreds of femtoseconds. The findings are useful for the development of spintronic devices that enable faster and more energy-efficient information processing and storage. The collaboration involved teams from the University of Strasbourg, HZB, Uppsala University and several other universities.
  • BESSY II: Magnetic ‘microflowers’ enhance magnetic fields locally
    Science Highlight
    25.03.2025
    BESSY II: Magnetic ‘microflowers’ enhance magnetic fields locally
    A flower-shaped structure only a few micrometres in size made of a nickel-iron alloy can concentrate and locally enhance magnetic fields. The size of the effect can be controlled by varying the geometry and number of 'petals'. This magnetic metamaterial developed by Dr Anna Palau's group at the Institut de Ciencia de Materials de Barcelona (ICMAB) in collaboration with her partners of the CHIST-ERA MetaMagIC project, has now been studied at BESSY II in collaboration with Dr Sergio Valencia. Such a device can be used to increase the sensitivity of magnetic sensors, to reduce the energy required for creating local magnetic fields, but also, at the PEEM experimental station, to study samples under much higher magnetic fields than currently possible.
  • HZB-magazine lichtblick - the new issue is out!
    News
    31.01.2025
    HZB-magazine lichtblick - the new issue is out!
    In the cover story we introduce Astrid Brandt. She is Head of User Coordination at Helmholtz-Zentrum Berlin. She and her team keep constant track of applications, measurement times and publications of the 1000 guest researchers who come to BESSY II each year.

    She has always been fascinated by science. But she has also never let go of her other passion, which is music.