LiXEdrom: Innovative measuring chamber for X-ray study of liquid jets

Close-up of the liquid-jet.

Close-up of the liquid-jet.

Schematic drawing of the LiXEdrom setup for X-ray <br /> absorption and X-ray emission <br /> spectroscopy on the liquid-jet

Schematic drawing of the LiXEdrom setup for X-ray
absorption and X-ray emission
spectroscopy on the liquid-jet

Until now, the only way to study liquids by soft X-ray emission spectroscopy (XES) has been through a membrane window. Now, researchers of Helmholtz-Zentrum Berlin have carried out an XES study of a free micro-liquid jet on the synchrotron.

X-rays are the medium of choice for many scientific studies. When you shine them on a sample, they literally shed light on the material’s structure, providing loads of information about it. Unfortunately, this mostly applies to solids only, since the sample has to be in a vacuum for the entire time it is being irradiated with soft X-rays. For liquids, that means you have to remove all the water. In the case of biological samples such as proteins, however, this destroys their natural environment. The solution to this problems has always been to measure liquids through membranes. These membranes keep the evacuated side separate from the non-evacuated side. The trouble is, one can never really be sure whether or not membrane effects are distorting the measurement results.

At Helmholtz-Zentrum Berlin (HZB), Emad Aziz, head of a junior research group, has shown that liquids can be investigated by X-ray emission spectroscopy without using membranes after all. At the synchrotron source BESSY II, the group has built a special setup – the LiXEdrom. It is unique in that the liquid is shot as a jet through the X-ray beam. The jet from the nozzle becomes so thin and, at 80 metres per second, so fast that the vacuum can be maintained without the need of a membrane.

“On our LiXEdrom, we create a vacuum in the liquid chamber of up to 10-6 millibar, and can now perform both absorption and emission measurements, giving us even more precise information about the structure of a material,” says Emad Aziz. It also allows a clear “view” of elements that possess absorption and emission energies similar to the energies of the membrane materials, and would therefore overlap with the membrane in the spectrum when measured. This concerns above all carbon and nitrogen – precisely those elements of interest in biological samples.

In their first measurements, published in Chemical Physics (DOI: 10.1016/JChemPhys.2010.08.023) and selected for the cover, the group demonstrated they can achieve energy resolutions on their LiXEdrom comparable to those of the latest high resolution XES spectrometers. For water, they have proven that results obtained from an earlier setup were not overlapped by disturbing membrane effects. They have also studied the electronic structure of nickel ions, unhampered by a risk of deposits on a membrane wall distorting the results. For many applications such as protein studies, this is a significant step towards obtaining reliable structural information.

Original paper in Chem. Phys., DOI 10.1016/JChemPhys.2010.08.023
„High Resolution X-ray Emission Spectroscopy of Water and Aqueous Ions Using the Micro-Jet Technique”, K.M. Lange et al.

IH

  • Copy link

You might also be interested in

  • Green fabrication of hybrid materials as highly sensitive X-ray detectors
    Science Highlight
    08.05.2025
    Green fabrication of hybrid materials as highly sensitive X-ray detectors
    New bismuth-based organic-inorganic hybrid materials show exceptional sensitivity and long-term stability as X-ray detectors, significantly more sensitive than commercial X-ray detectors. In addition, these materials can be produced without solvents by ball milling, a mechanochemical synthesis process that is environmentally friendly and scalable. More sensitive detectors would allow for a reduction in the radiation exposure during X-ray examinations.
  • Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    News
    07.05.2025
    Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    The Federal Institute for Materials Research and Testing (BAM), the Helmholtz-Zentrum Berlin (HZB), and Humboldt University of Berlin (HU Berlin) have signed a memorandum of understanding (MoU) to establish the Berlin Battery Lab. The lab will pool the expertise of the three institutions to advance the development of sustainable battery technologies. The joint research infrastructure will also be open to industry for pioneering projects in this field.
  • BESSY II: Insight into ultrafast spin processes with femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Insight into ultrafast spin processes with femtoslicing
    An international team has succeeded at BESSY II for the first time to elucidate how ultrafast spin-polarised current pulses can be characterised by measuring the ultrafast demagnetisation in a magnetic layer system within the first hundreds of femtoseconds. The findings are useful for the development of spintronic devices that enable faster and more energy-efficient information processing and storage. The collaboration involved teams from the University of Strasbourg, HZB, Uppsala University and several other universities.