A new cluster tool for EMIL

A cluster tool for the research on new classes of materials and device structures for photovoltaic and photocatalysis applications. (Source: Altatech)

A cluster tool for the research on new classes of materials and device structures for photovoltaic and photocatalysis applications. (Source: Altatech)

The Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) and Altatech, a subsidiary of Soitec, have launched a collaborative partnership to research and develop materials for the next generation of high-efficiency solar cells, including new classes of materials and innovative device structures for photovoltaic and photocatalysis applications.

As part of the organizations’ joint effort, Altatech will install a new single-substrate multi-chamber solution, an AltaCVD system, at HZB’s newly constructed Energy Materials Insitu Laboratory (EMIL) at the synchrotron light source BESSY II facility in Berlin. Together, HZB and Altatech will investigate new materials-deposition processes, functional interfaces and device structures for solar energy conversion and storage.

Altatech’s new AltaCVD system will be used in HZB’s EMIL lab to deposit amorphous silicon (alloys), transparent conductive oxides and ultra-thin dielectrics used in fabricating next generation solar energy devices. The CVD system will be hosted by the new EMIL building, adjacent to HZB´s third-generation storage ring BESSY II. The cluster tool will be directly connected to a state-of-the-art X-ray analytical end-station, which accesses a dedicated beam line from BESSY II. The partner organizations will conduct atomic-layer deposition, plasmaenhanced chemical vapor deposition and physical vapor deposition on substrates ranging from small research samples up to fully industry-compatible six-inch wafers and use EMIL’s outstanding analytical capabilities to analyze material and interface properties in between successive processing steps.

“EMIL aims at exploring materials for high-efficiency photovoltaic cells and new catalytic processes for future solar energy generation and storage concepts. We will develop and characterize these materials with basic energy research methods, but prepare them with industrially related methods to ensure rapid industrial implementation,” says Prof. Klaus Lips, head of the EMIL project and HZB’s Advanced Analytics Group. “The AltaCVD system provides us with a unique combination of a highly flexible design in terms of temperatures, precursors, plasma cleaning, etc. with a fully industrial-compatible deposition technology.”

“This order reinforces the AltaCVD system’s leadership position in advanced materialdeposition applications,” says Jean-Luc Delcarri, general manager of Soitec’s Altatech subsidiary. “Our collaboration with the Helmholtz-Zentrum Berlin allows us to apply our advanced material-deposition technology at a state-of-the-art synchrotron radiation facility. Together, we are opening the door to a new era in advanced renewable-energy development that will help researchers to tackle the challenges of future world energy needs.”

  • Copy link

You might also be interested in

  • Battery research: visualisation of aging processes operando
    Science Highlight
    29.04.2025
    Battery research: visualisation of aging processes operando
    Lithium button cells with electrodes made of nickel-manganese-cobalt oxides (NMC) are very powerful. Unfortunately, their capacity decreases over time. Now, for the first time, a team has used a non-destructive method to observe how the elemental composition of the individual layers in a button cell changes during charging cycles. The study, now published in the journal Small, involved teams from the Physikalisch-Technische Bundesanstalt (PTB), the University of Münster, researchers from the SyncLab research group at HZB and the BLiX laboratory at the Technical University of Berlin. Measurements were carried out in the BLiX laboratory and at the BESSY II synchrotron radiation source.
  • New instrument at BESSY II: The OÆSE endstation in EMIL
    Science Highlight
    23.04.2025
    New instrument at BESSY II: The OÆSE endstation in EMIL
    A new instrument is now available at BESSY II for investigating catalyst materials, battery electrodes and other energy devices under operating conditions: the Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) endstation in the Energy Materials In-situ Laboratory Berlin (EMIL). A team led by Raul Garcia-Diez and Marcus Bär showcases the instrument’s capabilities via a proof-of-concept study on electrodeposited copper.
  • Green hydrogen: A cage structured material transforms into a performant catalyst
    Science Highlight
    17.04.2025
    Green hydrogen: A cage structured material transforms into a performant catalyst
    Clathrates are characterised by a complex cage structure that provides space for guest ions too. Now, for the first time, a team has investigated the suitability of clathrates as catalysts for electrolytic hydrogen production with impressive results: the clathrate sample was even more efficient and robust than currently used nickel-based catalysts. They also found a reason for this enhanced performance. Measurements at BESSY II showed that the clathrates undergo structural changes during the catalytic reaction: the three-dimensional cage structure decays into ultra-thin nanosheets that allow maximum contact with active catalytic centres. The study has been published in the journal ‘Angewandte Chemie’.