The BER II neutron source is back in operation and available for experiments following the interruption in availability

<br />The High-Field Magnet (HFM) has attained 26 tesla in an initial test and thereby exceeded expectations. The HFM team is pleased about the well-deserved success.<br /><br />


The High-Field Magnet (HFM) has attained 26 tesla in an initial test and thereby exceeded expectations. The HFM team is pleased about the well-deserved success.

© HZB/Ingo Kniest

Maintenance work has been successfully concluded – the High-Field Magnet has successfully attained 26 tesla in initial testing. New scientific experiments have become possible.

Berlin, February 2015: following conclusion of more than a of year of repairs and refurbishing, the BER II neutron source will shortly be available to its international user group again. The facility was powered up on Wednesday, February 18 and attained its nominal power level of 9,5 megawatts. Scientists of HZB are meanwhile preparing the measurement equipment so that experimental work can resume following a brief start-up period.

During the service interruption, a weld joint was eliminated that was known to be a potential weak point. This involved a weld joint for a seal located in the area of the separator between the two reactor pool halves. Damage to this weld joint was discovered in 2010 and has been carefully monitored since that time. This did not involve a component critical to safety; nevertheless, it was decided in 2013 to completely remove the weld joint.

At the same time, the new High-Field Magnet went through final assembly and was setup in its final operating position inside in the Neutron Guide Hall. Its 26-tesla magnetic field was first generated in December 2014 and it maintained this value stably over a longer period of time. So it even exceeded its target value of 25 tesla.

Following the maintenance period, an important objective was reached with the successful resumption in BER II operations: participants of the international Neutron School can again be offered actual neutron experiments of the customary high quality. The 12-day advanced course for young scientists will be taking place in Berlin for the 35th time, from February 26th to March 6th.

Developing and successfully setting up the High-Field Magnet, unique for neutron experiments, has only taken 7.5 years. All of the comparable hybrid magnet construction projects worldwide during the past 25 years have taken between 9.5 and 16 years. The brief project length can therefore be viewed as top of its class. In addition, the project remained within its planned budget of just under 21 mil. EUR after adjusting for inflation.

The High-Field Magnet represents yet another first-class instrument that is being connected to the neutron source for the final BER II support period. Completely new kinds of experiments become possible that will open up access to new science, such as researching superconduction and magnetic phase transitions in solid-state materials, for example.

IH

  • Copy link

You might also be interested in

  • Fascinating archaeological find becomes a source of knowledge
    News
    12.02.2026
    Fascinating archaeological find becomes a source of knowledge
    The Bavarian State Office for the Preservation of Historical Monuments (BLfD) has sent a rare artefact from the Middle Bronze Age to Berlin for examination using cutting-edge, non-destructive methods. It is a 3,400-year-old bronze sword, unearthed during archaeological excavations in Nördlingen, Swabia, in 2023. Experts have been able to determine how the hilt and blade are connected, as well as how the rare and well-preserved decorations on the pommel were made. This has provided valuable insight into the craft techniques employed in southern Germany during the Bronze Age. The BLfD used 3D computed tomography and X-ray diffraction to analyse internal stresses at the Helmholtz-Zentrum Berlin (HZB), as well as X-ray fluorescence spectroscopy at a BESSY II beamline supervised by the Bundesanstalt für Materialforschung und -prüfung (BAM).
  • MXene for energy storage: More versatile than expected
    Science Highlight
    03.02.2026
    MXene for energy storage: More versatile than expected
    MXene materials are promising candidates for a new energy storage technology. However, the processes by which the charge storage takes place were not yet fully understood. A team at HZB has examined, for the first time, individual MXene flakes to explore these processes in detail. Using the in situ Scanning transmission X-ray microscope 'MYSTIIC' at BESSY II, the scientists mapped the chemical states of Titanium atoms on the MXene flake surfaces. The results revealed two distinct redox reactions, depending on the electrolyte. This lays the groundwork for understanding charge transfer processes at the nanoscale and provides a basis for future research aimed at optimising pseudocapacitive energy storage devices.
  • Bernd Rech elected to the BR50 Board of Directors
    News
    30.01.2026
    Bernd Rech elected to the BR50 Board of Directors
    The Scientific Director at Helmholt-Zentrum Berlin is the new face behind the "Natural Sciences" unit at Berlin Research 50 (BR50). Following the election in December 2025, the constituent meeting of the new BR50 Board of Directors took place on 22 January 2026.

    Its members are Michael Hintermüller (Weierstrass Institute, WIAS), Noa K. Ha (German Centre for Integration and Migration Research, DeZIM), Volker Haucke (Leibniz Research Institute for Molecular Pharmacology, FMP), Uta Bielfeldt (German Rheumatism Research Centre Berlin, DRFZ) and Bernd Rech (HZB).