Joint Lab BeJEL receives 1.4 million EUR grant

The Berlin Joint EPR Laboratory (BeJEL) operated by HZB and Freie Universität Berlin has pulled in six of 27 subprojects within a DFG priority program to address“New Frontiers in Sensitivity for EPR Spectroscopy – from Biological Cells to Nano Materials”.

Electron spins are unique probes for materials and life sciences, and can be detected through electron paramagnetic resonance (EPR). The functioning of molecular machines, or the electronic properties of solar cells as well as catalytic chemical reactions, for example, can be determined at BeJEL using this method. To further enhance the sensitivity and resolution of EPR, the DFG Priority Programme SPP-1601 “New Frontiers in Sensitivity for EPR Spectroscopy – from Biological Cells to Nano Materials” has now been extended for a further three years through grants totalling 7.9 million EUR. In addition, DFG will make available 500,000 EUR to further expand collaboration with EPR groups in the USA.

Berlin-based BeJEL successfully pulled in six of the total 27 project grants within the competitive SPP Priority Programme selection process. With the help of 1.4 million EUR in DFG funding, BeJEL will now be in a position to push EPR into the terahertz region, implement ultra-high vacuum sample environments, develop miniature resonators and novel spin labels for investigating proteins in biological cells and study charge transport processes in inorganic and organic solar cells.

“The new financial stimulus from the DFG SPP Priority Programme considerably strengthens Berlin as an EPR site”, says Prof. Robert Bittl, official spokesperson for BeJEL. “In addition, we will be able to undertake new collaborative projects with our partners in Germany and the USA to achieve our ambitious goal of detecting even very small spin ensembles in the systems we are investigating”, adds Prof. Klaus Lips from HZB.

The six individual projects will be undertaken by the following BeJEL project leaders: Prof. Jan Behrends (Freie Universität Berlin/HZB), Prof. Robert Bittl (Freie Universität Berlin), Prof. Enrica Bordignon (Freie Universität Berlin), Prof. Klaus Lips (HZB), Prof. Thomas Risse (Freie Universität Berlin), and Dr. Alexander Schnegg (HZB).

More information on BeJEL

More Information on the research project: www.spp1601.de

red.

  • Copy link

You might also be interested in

  • Key technology for a future without fossil fuels
    Interview
    21.08.2025
    Key technology for a future without fossil fuels
    In June and July 2025, catalyst researcher Nico Fischer spent some time at HZB. It was his sabbatical, he was relieved of his duties as Director of the Catalysis Institute in Cape Town for several months and was able to focus on research only. His institute is collaborating with HZB on two projects that aim to develop environmentally friendly alternatives using innovative catalyst technologies. The questions were asked by Antonia Rötger, HZB.
  • 5000th patient treated with protons for eye tumours
    News
    19.08.2025
    5000th patient treated with protons for eye tumours
    For more than 25 years, Charité – Universitätsmedizin Berlin and the Helmholtz-Zentrum Berlin (HZB) have been jointly offering proton radiation therapy for eye tumours. The HZB operates a proton accelerator in Berlin-Wannsee for this purpose, while Charité provides medical care for the patients. The 5000th patient was treated at the beginning of August.
  • Iridium-free catalysts for acid water electrolysis investigated
    Science Highlight
    13.08.2025
    Iridium-free catalysts for acid water electrolysis investigated
    Hydrogen will play an important role, both as a fuel and as a raw material for industry. However, in order to produce relevant quantities of hydrogen, water electrolysis must become feasible on a multi-gigawatt scale. One bottleneck is the catalysts required, with iridium in particular being an extremely rare element. An international collaboration has therefore investigated iridium-free catalysts for acidic water electrolysis based on the element cobalt. Through investigations with various methods, among them experiments at the LiXEdrom at the BESSY II X-ray source in Berlin, they were able to elucidate processes that take place during water electrolysis in a cobalt-iron-lead oxide material as the anode. The study is published in Nature Energy.