Optimum band gap for hybrid silicon/perovskite tandem solar cell

Sketch of the tandem cell.

Sketch of the tandem cell. © H. Cords/HZB

Tandem solar cells based on silicon and perovskites have raised high hopes for future high efficiency solar modules.  A team led by perovskite solar cell pioneer Henry Snaith at the University of Oxford has now shown, with contributions by Bernd Rech and Lars Korte of the Helmholtz-Zentrum Berlin, that an ultimate efficiency of 30% should be attainable with such tandem cells. They discovered a structurally stable perovskite composition with its band gap tuned to an optimum value of 1.75 eV. The results have been published in "Science".

Tandem solar cells based on silicon and perovskites have raised high hopes for future high efficiency solar modules (see also results here). A tandem solar cell works by absorbing the high energy photons (visible light) in a top cell which generates a high voltage, and the lower energy photons (Infra red) in a rear cell, which generates a lower voltage. This increases the theoretical maximum efficiency by about 50% in comparison to a standalone silicon cell.

To maximise efficiency, the amount of light absorbed in top cell has to precisely match the light absorbed in the rear cell. However, the band gap of ~1.6eV of the standard perovskite material is too small to fully exploit the efficiency potential of this technology.

A team led by perovskite solar cell pioneer Prof. Henry Snaith FRS at the University of Oxford, in collaboration with silicon solar cell experts Prof. Bernd Rech and Dr. Lars Korte of the Helmholtz-Zentrum Berlin, have shown that an ultimate efficiency of 30% should be attainable with such tandem cells.

They conceived together a tandem cell, in a configuration where the perovskite and  the silicon cell are mechanically stacked and contacted separately. The HZB team contributed the silicon cell. The Oxford group did vary systematically the chemical composition of the perovskite layer, and with a precise cocktail of ions discovered a structurally stable perovsksite  with its band gap tuned to an optimum value of 1.75 electron volts, maintaining a high electronic quality of the layer. At the same time, they increased the chemical and thermal stability of the material significantly.

Science 8 January 2016: Vol. 351 no. 6269 pp. 151-155

A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells

DOI: 10.1126/science.aad5845


 

arö

  • Copy link

You might also be interested in

  • Bright prospects for tin perovskite solar cells
    Science Highlight
    03.12.2025
    Bright prospects for tin perovskite solar cells
    Perovskite solar cells are widely regarded as the next generation photovoltaic technology. However, they are not yet stable enough in the long term for widespread commercial use. One reason for this is migrating ions, which cause degradation of the semiconducting material over time. A team from HZB and the University of Potsdam has now investigated the ion density in four different, widely used perovskite compounds and discovered significant differences. Tin perovskite semiconductors produced with an alternative solvent had a particular low ion density — only one tenth that of lead perovskite semiconductors. This suggests that tin-based perovskites could be used to make solar cells that are not only really environmentally friendly but also very stable.

  • Joint Kyiv Energy and Climate Lab goes live
    News
    28.11.2025
    Joint Kyiv Energy and Climate Lab goes live
    Helmholtz-Zentrum Berlin and the National University of Kyiv-Mohyla Academy established on 27 November a Joint Energy and Climate Lab.
  • How carbonates influence CO2-to-fuel conversion
    Science Highlight
    25.11.2025
    How carbonates influence CO2-to-fuel conversion
    Researchers from the Helmholtz Zentrum Berlin (HZB) and the Fritz Haber Institute of the Max Planck Society (FHI) have uncovered how carbonate molecules affect the conversion of CO2 into valuable fuels on gold electrocatalysts. Their findings reveal key molecular mechanisms in CO2 electrocatalysis and hydrogen evolution, pointing to new strategies for improving energy efficiency and reaction selectivity.