Maria Skłodowska Curie Postdoctoral Fellowship for Artem Musiienko

Dr. Artem Musiienko has earned has earned a prestigious Maria Skłodowska Curie Postdoctoral Fellowship to improve lead free perovskite solar cells.

Dr. Artem Musiienko has earned has earned a prestigious Maria Skłodowska Curie Postdoctoral Fellowship to improve lead free perovskite solar cells. © F. Krawatzek /HZB

Dr. Artem Musiienko has earned a prestigious Maria Skłodowska Curie Postdoctoral Fellowship for his research project HyPerGreen. In the group of Prof. Antonio Abate, HZB, Musiienko will explore and improve lead-free perovskite solar cells with the goal to increase their efficiency to more than 20 %.  

Musiienko completed his doctorate in 2018 at Charles University in Prague on a topic related to semiconductor physics and subsequently worked there as a research assistant. In 2020, he moved to the HZB Institute for Silicon Photovoltaics, where he investigated defects in halide perovskites, among other things. He has contributed significantly to the enormous increases in the efficiency of halide perovskite solar cells, for which the HZB is now internationally renowned.

"However, those highly efficient halide perovskites contain small amounts of lead, a toxic heavy metal that must not be released into the environment," says Musiienko. But lead can be replaced with tin, which has been shown to be non-bioavailable and therefore harmless. So far, however, the efficiency and stability of tin perovskite solar cells are much lower in comparison. Musiienko now plans in his HyPerGreen project to significantly improve tin perovskite solar cells and to explore the mechanisms that limit charge transport in the bulk and at the interface of these materials. Musiienko will use the novel Photo-Hall method, he has recently developed at HZB. “At the moment, together with HZB, we patent this method”, he adds. The method is based on a combination of magnetic field and light and can be used to explore charge transport parameters and limiting factors of the material, which were unreachable otherwise. His goal is ambitious: In his projects he is aiming for efficiencies of over 20 %, a big step forward from the current record of 14.6 % (1).

(1): Efficiency record for tin perovskite solar cells: Jiang, X. et al. J. Am. Chem. Soc. 143 (29), 10970-10976 (2021))

 

arö


You might also be interested in

  • Quantsol Summer School 2024 - Call for Application
    News
    17.04.2024
    Quantsol Summer School 2024 - Call for Application
    Registration for Quantsol is now open!

    The International Summer School on Photovoltaics and New Concepts of Quantum Solar Energy Conversion (Quantsol) will be held in September 1-8, 2024 in Hirschegg, Kleinwalsertal, Austria. The school is organised by the Helmholtz-Zentrum Berlin and the Technical University of Ilmenau. Applications can be submitted through the school’s homepage until Friday 31st of May 2024, 23.59h CET.

  • A simpler way to inorganic perovskite solar cells
    Science Highlight
    17.04.2024
    A simpler way to inorganic perovskite solar cells
    Inorganic perovskite solar cells made of CsPbI3 are stable over the long term and achieve good efficiencies. A team led by Prof. Antonio Abate has now analysed surfaces and interfaces of CsPbI3 films, produced under different conditions, at BESSY II. The results show that annealing in ambient air does not have an adverse effect on the optoelectronic properties of the semiconductor film, but actually results in fewer defects. This could further simplify the mass production of inorganic perovskite solar cells.
  • Vortrag "BIPV - zwischen Bauwelt und Photovoltaik"
    Nachricht
    15.04.2024
    Vortrag "BIPV - zwischen Bauwelt und Photovoltaik"
    Im Rahmen der The smarter-e Europe/Intersolar Europe 2024 findet eine Vortragssession organisiert von der Allianz BIPV und dem Solarenergieförderverein Bayern e.V. zum Thema "Bauwerkintegrierte Photovoltaik (BIPV)" statt.

    Datum: 19. Juni 2024, 16:00 -17:45 Uhr
    Ort:       Messe München, Halle A3, Stand A3.150