TU Berlin appoints Renske van der Veen as professor

Dr. Renske van der Veen investigates catalytic processes at BESSY II, which are crucial for the production of green hydrogen, among other things.

Dr. Renske van der Veen investigates catalytic processes at BESSY II, which are crucial for the production of green hydrogen, among other things. © M: Setzpfandt/HZB

For the past two years, Dr Renske van der Veen has led a research group in time-resolved X-ray spectroscopy and electron microscopy at HZB. Her research focuses on catalytic processes that enable, for example, the production of green hydrogen. She has now been appointed to a S-W2 professorship at the Institute of Optics and Atomic Physics (IOAP) at the Technische Universität Berlin.

 

Dr Renske van der Veen specialises in ultrafast X-ray methods, which she uses at BESSY II to study the fast processes involved in catalysis. Van der Veen is also contributing her expertise to the scientific requirements profile for the successor X-ray source BESSY III.

Renske van der Veen studied at the ETH Zurich and completed her PhD at the École Polytechnique Fédérale de Lausanne (EPFL). She went on to do research at the California Institute of Technology, the Max Planck Institute for Biophysical Chemistry in Göttingen and the University of Illinois, where she was also an assistant professor. She has received the Alexander von Humboldt Foundation's Sofja Kovalevskaja Award and the Packard Fellowship for Science and Engineering.

arö


You might also be interested in

  • Clean cooking fuel with a great impact for southern Africa
    News
    19.04.2024
    Clean cooking fuel with a great impact for southern Africa
    Burning biomass for cooking causes harmful environmental and health issues. The German-South African GreenQUEST initiative is developing a clean household fuel. It aims to reduce climate-damaging CO2 emissions and to improve access to energy for households in sub-Saharan Africa.

  • A simpler way to inorganic perovskite solar cells
    Science Highlight
    17.04.2024
    A simpler way to inorganic perovskite solar cells
    Inorganic perovskite solar cells made of CsPbI3 are stable over the long term and achieve good efficiencies. A team led by Prof. Antonio Abate has now analysed surfaces and interfaces of CsPbI3 films, produced under different conditions, at BESSY II. The results show that annealing in ambient air does not have an adverse effect on the optoelectronic properties of the semiconductor film, but actually results in fewer defects. This could further simplify the mass production of inorganic perovskite solar cells.
  • Spintronics: A new path to room temperature swirling spin textures
    Science Highlight
    16.04.2024
    Spintronics: A new path to room temperature swirling spin textures
    A team at HZB has investigated a new, simple method at BESSY II that can be used to create stable radial magnetic vortices in magnetic thin films.