SXR2023: Deadline for submissions April 15

© Jörg Zägel, CC BY-SA 3.0

The SXR2023 (Principles of Functionality from Soft-X-Ray Spectroscopy) brings together young and experienced scientists to discuss recent scientific highlights, trends, and current advances with soft X-ray spectroscopy. Our goal is to further understanding on the atomic level. The impetus is to influence and ideally shape functionality in materials and molecular systems. In this effort, scientists cross intentionally the boundaries between physics, chemistry and materials and focus on the unifying aspects of functionality. Insights to the governing principles are often based on the combination of experiment with first principles theory and models. Thus a profound description of X-ray matter interaction — creating the spectroscopic observables — is always underlying.

Registration/Abstract Submission:

The Scientific Organizing Committee invites your registration combined with abstract submissions for exclusively hot-topic oral presentations and poster contributions until April 15th, 2023, at the latest.

An e-mail notification for accepted abstracts will be sent out around the end of April 2023. Places are limited.

Please see the conference website for more detailed information.

Please note that we cannot offer financial support regarding travels and accommodation. Instead there will be no conference fee.




You might also be interested in

  • Quantsol Summer School 2024 - Call for Application
    Quantsol Summer School 2024 - Call for Application
    Registration for Quantsol is now open!

    The International Summer School on Photovoltaics and New Concepts of Quantum Solar Energy Conversion (Quantsol) will be held in September 1-8, 2024 in Hirschegg, Kleinwalsertal, Austria. The school is organised by the Helmholtz-Zentrum Berlin and the Technical University of Ilmenau. Applications can be submitted through the school’s homepage until Friday 31st of May 2024, 23.59h CET.

  • A simpler way to inorganic perovskite solar cells
    Science Highlight
    A simpler way to inorganic perovskite solar cells
    Inorganic perovskite solar cells made of CsPbI3 are stable over the long term and achieve good efficiencies. A team led by Prof. Antonio Abate has now analysed surfaces and interfaces of CsPbI3 films, produced under different conditions, at BESSY II. The results show that annealing in ambient air does not have an adverse effect on the optoelectronic properties of the semiconductor film, but actually results in fewer defects. This could further simplify the mass production of inorganic perovskite solar cells.
  • Spintronics: A new path to room temperature swirling spin textures
    Science Highlight
    Spintronics: A new path to room temperature swirling spin textures
    A team at HZB has investigated a new, simple method at BESSY II that can be used to create stable radial magnetic vortices in magnetic thin films.