BESSY II: Local variations in the structure of High-Entropy Alloys
The analysis of the EXAFS data showed different local environments around the elements of the Cantor alloy depending on the annealing temperature, which indicate different ordering and diffusion processes. Manganese diffuses fastest in the high-temperature state, nickel in the low-temperature state. © HZB
High-entropy alloys can withstand extreme heat and stress, making them suitable for a variety of specific applications. A new study at the X-ray synchrotron radiation source BESSY II has now provided deeper insights into the ordering processes and diffusion phenomena in these materials. The study involved teams from HZB, the Federal Institute for Materials Research and Testing, the University of Latvia and the University of Münster.
The team analysed samples of a so-called Cantor alloy, which consists of five 3d elements: chromium, manganese, iron, cobalt and nickel. The samples of crystalline structures (face-centred cubic, fcc) were annealed at two different temperatures and then shock frozen.
The study focussed on unravelling local atomic structures in single crystalline samples cooled from either a high-temperature (HT) state annealed at 1373 Kelvin or a low-temperature (LT) state annealed at 993 Kelvin. To analyse the local environments of the individual elements in the samples, the team used a well established method: element-specific multi-edge X-ray absorption spectroscopy (EXAFS). To interpret the measurement data in the most precise and unbiased manner, the team carried out a Reverse Monte Carlo (RMC) based analysis.
"In this way, we have been able to reveal, both qualitatively and quantitatively, the peculiarities of the characteristic local environments of each principal components of the alloy at the atomic scale," explains Dr Alevtina Smekhova from HZB. In particular, the spectroscopic results also provide insights into the diffusion processes in HEAs. For example, it was directly demonstrated that the element manganese diffuses fastest in the HT samples, while the element nickel diffuses faster in the LT samples as it was found earlier from diffusion experiments.
"These results help us to better understand the relationship between the local atomic environment and the macroscopic properties in these alloys," explains Smekhova.
arö
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=26126;sprache=en
- Copy link
-
Fascinating archaeological find becomes a source of knowledge
The Bavarian State Office for the Preservation of Historical Monuments (BLfD) has sent a rare artefact from the Middle Bronze Age to Berlin for examination using cutting-edge, non-destructive methods. It is a 3,400-year-old bronze sword, unearthed during archaeological excavations in Nördlingen, Swabia, in 2023. Experts have been able to determine how the hilt and blade are connected, as well as how the rare and well-preserved decorations on the pommel were made. This has provided valuable insight into the craft techniques employed in southern Germany during the Bronze Age. The BLfD used 3D computed tomography and X-ray diffraction to analyse internal stresses at the Helmholtz-Zentrum Berlin (HZB), as well as X-ray fluorescence spectroscopy at a BESSY II beamline supervised by the Bundesanstalt für Materialforschung und -prüfung (BAM).
-
Element cobalt exhibits surprising properties
The element cobalt is considered a typical ferromagnet with no further secrets. However, an international team led by HZB researcher Dr. Jaime Sánchez-Barriga has now uncovered complex topological features in its electronic structure. Spin-resolved measurements of the band structure (spin-ARPES) at BESSY II revealed entangled energy bands that cross each other along extended paths in specific crystallographic directions, even at room temperature. As a result, cobalt can be considered as a highly tunable and unexpectedly rich topological platform, opening new perspectives for exploiting magnetic topological states in future information technologies.
-
MXene for energy storage: More versatile than expected
MXene materials are promising candidates for a new energy storage technology. However, the processes by which the charge storage takes place were not yet fully understood. A team at HZB has examined, for the first time, individual MXene flakes to explore these processes in detail. Using the in situ Scanning transmission X-ray microscope 'MYSTIIC' at BESSY II, the scientists mapped the chemical states of Titanium atoms on the MXene flake surfaces. The results revealed two distinct redox reactions, depending on the electrolyte. This lays the groundwork for understanding charge transfer processes at the nanoscale and provides a basis for future research aimed at optimising pseudocapacitive energy storage devices.