BESSY II: Was Molekül-Orbitale über die Stabilität aussagen

Molekulargeometrische Strukturen der trans- und cis-Isomere Fumarat und Maleat (oben, von links nach rechts) zusammen mit ihrem hydrierten Molekül, den Succinat-Dianionen (unten).

Molekulargeometrische Strukturen der trans- und cis-Isomere Fumarat und Maleat (oben, von links nach rechts) zusammen mit ihrem hydrierten Molekül, den Succinat-Dianionen (unten). © HZB

Fumarat, Maleat und Succinat sind organische Moleküle, die in der Koordinationschemie und teilweise auch in der Biochemie der Körperzellen eine Rolle spielen. Ein HZB-Team hat diese Moleküle nun an BESSY II mit Hilfe von RIXS und DFT-Simulationen analysiert. Die Ergebnisse geben nicht nur Aufschluss über die elektronischen Strukturen, sondern auch über die relative Stabilität dieser Moleküle. Dies könnte auch der Industrie dabei helfen, die Stabilität von Koordinationspolymeren zu optimieren.

Fumarat, Maleat und Succinat sind Carbonsäure-Dianionen vom Typ C4H2O4 oder C4H4O4 und können unterschiedlichen Geometrien (cis oder trans) und unterschiedliche Eigenschaften besitzen. Einige Varianten können beispielsweise metallische Elemente in organische Verbindungen einbauen und spielen damit eine Schlüsselrolle in der Koordinationschemie, andere Varianten sind in biologischen Prozessen wichtig. So entstehen Fumarat und Succinat als Zwischenprodukte in den Mitochondrien von Zellen. Maleat dagegen bildet sich in der Regel nicht in natürlichen biologischen Prozessen und wird genutzt, um haltbare Materialien herzustellen. Dabei stellt sich jedoch die Frage, ob diese Verbindungen ewig halten oder biologisch abbaubar sind.

Die Stabilität von Fumarat-, Maleat- und Succinat-Dianionen wird nicht nur durch ihre Molekülgeometrien beeinflusst, sondern auch durch die elektronische Struktur der Moleküle, insbesondere durch das höchste besetzte Molekülorbital (HOMO) und das niedrigste unbesetzte Molekülorbital (LUMO). Der Einfluss der Molekülorbitale auf die Stabilität dieser Moleküle ist jedoch noch nicht erforscht.

XAS und RIXS an BESSY II

Nun hat ein Team am HZB unter der Leitung von Prof. Alexander Föhlisch den Einfluss der elektronischen Struktur auf die Stabilität von Fumarat-, Maleat- und Succinat-Dianionen aufgeklärt. „Wir haben diese Verbindungen an BESSY II mit zwei verschiedenen, sehr leistungsfähigen Methoden analysiert“, sagt Dr. Viktoriia Savchenko, Erstautorin der Studie. So gibt die Röntgenabsorptionsspektroskopie (XAS) Aufschluss über die unbesetzten elektronischen Zustände eines Systems, während die resonante inelastische Röntgenstreuung (RIXS) Informationen über die besetzten höchsten Orbitale und über Wechselwirkungen zwischen den HOMO-LUMO-Orbitalen liefert. Die Ergebnisse können mit makroskopischen Eigenschaften, insbesondere der Stabilität, in Verbindung gebracht werden.

Maleat weniger stabil

Die Analyse der Spektraldaten zeigt, dass Maleat potenziell weniger stabil ist als Fumarat und Succinat. Und mehr noch: Die Analyse erklärt auch, warum: Die elektronische Dichte im HOMO-Orbital an der C=C-Bindung zwischen den Carboxylatgruppen könnte zu einer schwächeren Bindung von Maleat mit Molekülen oder Ionen führen. Fumarat und Succinat hingegen könnten stabiler sein, da ihre HOMO-Orbitale gleichermaßen delokalisiert sind. „Damit besteht die Möglichkeit, dass Maleat durch bestimmte Zusatzstoffe abgebaut werden könnte“, sagt Savchenko.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Science Highlight
    05.11.2025
    Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Noch immer ist die Hochtemperatursupraleitung nicht vollständig verstanden. Nun hat ein internationales Forschungsteam an BESSY II die Energie von Ladungsträgerpaaren in undotiertem La₂CuO₄ vermessen. Die Messungen zeigten, dass die Wechselwirkungsenergien in den potenziell supraleitenden Kupferoxid-Schichten deutlich geringer sind als in den isolierenden Lanthanoxid-Schichten. Die Ergebnisse tragen zum besseren Verständnis der Hochtemperatur-Supraleitung bei und könnten auch für die Erforschung anderer funktionaler Materialien relevant sein.
  • Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Science Highlight
    31.10.2025
    Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Hybride Elektrokatalysatoren können beispielsweise gleichzeitig grünen Wasserstoff und wertvolle organische Verbindungen produzieren. Dies verspricht wirtschaftlich rentable Anwendungen. Die komplexen katalytischen Reaktionen, die bei der Herstellung organischer Verbindungen ablaufen, sind jedoch noch nicht vollständig verstanden. Moderne Röntgenmethoden an Synchrotronquellen wie BESSY II ermöglichen es, Katalysatormaterialien und die an ihren Oberflächen ablaufenden Reaktionen in Echtzeit, in situ und unter realen Betriebsbedingungen zu analysieren. Dies liefert Erkenntnisse, die für eine gezielte Optimierung genutzt werden können. Ein Team hat nun in Nature Reviews Chemistry einen Überblick über den aktuellen Wissensstand veröffentlicht.
  • Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Nachricht
    22.10.2025
    Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Wir freuen uns sehr und gratulieren unserer studentischen Mitarbeiterin Luca Raschke zum erfolgreich abgeschlossenen Masterstudium der Regenerativen Energien an der Hochschule für Technik und Wirtschaft Berlin – und das mit Auszeichnung!