14.01.2015

VEKMAG-Messplatz an BESSY II

Schematische Darstellung der VEKMAG-Messstation: Der Vektormagnet befindet sich in der Vakuumkammer (grau), die in einem sechsbeinigen Gerüst aufgehängt ist. Unterhalb des Magneten liegt die Detektorkammer (grün), im Bildvordergrund ist die Depositionskammer (dunkelgrau) zu sehen. Die Strahlqualität wird durch eine Diagnose-Einheit (goldfarbig) kontinuierlich kontrolliert. Grafik: Dr. Tino Noll

Gemeinsam mit dem HZB haben Teams von der Universität Regensburg, der Freien Universität Berlin sowie der Ruhr-Universität Bochum bei BESSY II einen einzigartigen, neuen Messplatz aufgebaut: ein Vektormagnet aus drei senkrechten Helmholtz-Spulen ermöglicht es, lokal an der Probenposition beliebig orientierte Magnetfelder einzustellen. 2015 sollen erste Messungen an magnetischen Materialien, Spinsystemen und nanostrukturierten Proben durchgeführt werden.

Ende des Jahres wurde das Herzstück des VEKMAG-Messplatzes an das HZB geliefert: Es besteht aus drei senkrecht zueinander angeordneten Helmholtz-Spulen, die an jedem Ort in der Ultrahochvakuum- Probenkammer ein Magnetfeld der gewünschten Ausrichtung erzeugt. Die Spulen aus einer supraleitenden Niob-Titan-Legierung werden mit flüssigem Helium gekühlt. Die Feldstärken sind in der Ebene der Probenoberfläche auf ein und zwei Tesla begrenzt, können in Strahlrichtung jedoch bis zu neun Tesla erreichen.

Sechs Jahre Entwicklungsarbeit

„Seit fast sechs Jahren treiben wir dieses Projekt gemeinsam voran“, berichtet HZB-Physiker Dr. Florin Radu. Er koordiniert das Projekt mit den drei Universitäten. An der Freien Universität Berlin wurde die Wachstumskammer für die Proben entworfen. Die Ruhr-Universität Bochum baute die Detektorkammern, und die Universität Regensburg hat das Konzept für die synchrotronstrahlungsbasierte ferromagnetische Resonanz entwickelt.

Schnelle Einstellung der Polarisation

Radu und sein Team sorgten indessen für optimale Experimentierbedingungen an der Beamline: „Wir brauchen einen extrem stabilen Strahl, möchten aber auch sehr rasch die Polarisation des Lichts ändern können“, erklärt er. „Daher haben wir eine Hexapod-Vakuumkammer mit sechs beweglichen Beinen entwickelt, die einen Spiegel trägt. Durch leichte Positionsänderungen der Beine verändern wir die Orientierung des Spiegels und damit die Polarisation des Strahls, und zwar binnen Sekunden, also rund hundertmal schneller als bisher.“ Die Tests zeigen, dass diese Anordnung das Verhältnis von Signal zu Rauschen um das zehnfache verbessert.

Temperaturbereich 1,6 K - 500 K

Der neue Experimentierplatz ermöglicht vielfältige Untersuchungen, insbesondere im weichen Röntgenbereich und bei Temperaturen von 500 Kelvin bis hinab zu 1,6 Kelvin. Dabei dringen die Röntgenstrahlen in die einzelnen Atome ein und regen ihre Außenelektronen an, so dass man magnetische Eigenschaften der einzelnen Elemente unterscheiden kann.

Der neue Messplatz wird auch im internationalen Vergleich einzigartige Messbedingungen für elementspezifische und zeitaufgelöste Messungen der ferromagnetischen und paramagnetischen Resonanz sowie für Spektroskopie- und Streuexperimente bieten. „Sein volles Potenzial wird der VEKMAG aber erst dann entfalten, wenn wir an BESSY II ein neues  und innovatives Strahlkonzept mit variabler Pulslänge bei voller Photonenintensität realisiert haben“, so Radu, denn: „Damit können wir dann schnelle Umschaltprozesse von Spins mit besonders hoher Zeitauflösung untersuchen.“

Das Projekt VEKMAG wurde vom Bundesministerium für Bildung und Forschung (BMBF) mit insgesamt rund vier Mio. Euro finanziert.




Downloads

arö