Inorganic perovskite absorbers for use in thin-film solar cells

</p> <p>By co-evaporation of cesium iodide and lead iodide thin layers of CsPbI<sub>3</sub> can be produced even at moderate temperatures. An excess of cesium leads to stable perovskite phases.

By co-evaporation of cesium iodide and lead iodide thin layers of CsPbI3 can be produced even at moderate temperatures. An excess of cesium leads to stable perovskite phases. © J. Marquez-Prieto/HZB

A team at the Helmholtz-Zentrum Berlin has succeeded in producing inorganic perovskite thin films at moderate temperatures using co-evaporation – making post-tempering at high temperatures unnecessary. The process makes it much easier to produce thin-film solar cells from this material. In comparison to metal-organic hybrid perovskites, inorganic perovskites are more thermally stable. The work has been published in Advanced Energy Materials.

Teams all over the world are working intensively on the development of perovskite solar cells. The focus is on what are known as metal-organic hybrid perovskites whose crystal structure is composed of inorganic elements such as lead and iodine as well as an organic molecule.

Completely inorganic perovskite semiconductors such as CsPbI3 have the same crystalline structure as hybrid perovskites, but contain an alkali metal such as caesium instead of an organic molecule. This makes them much more stable than hybrid perovskites, but usually requires an extra production step at very high temperature – several hundred degrees Celsius. For this reason, inorganic perovskite semiconductors have thus far been difficult to integrate into thin-film solar cells that cannot withstand high temperatures. A team headed by Dr. Thomas Unold has now succeeded in producing inorganic perovskite semiconductors at moderate temperatures so that they might also be used in thin-film cells in the future.

The physicists designed an innovative experiment in which they synthesised and analysed many combinations of material within a single sample. Using co-evaporation of caesium-iodide and  lead-iodide, they produced thin layers of CsPbI3, systematically varying the amounts of these elements, while the substrate-temperature was less than 60 degrees Celsius.

“A combinatorial research approach like this allows us to find optimal production parameters for new material systems much faster than with the conventional approach that typically requires 100 samples to be produced for 100 different compositions”, explains Unold. Through careful analysis during synthesis and the subsequent measurements of the optoelectronic properties, they were able to determine how the composition of the thin film affects the material properties.

Their measurements show that the structural as well as important optoelectronic properties of the material are sensitive to the ratio of caesium to lead. Thus, excess caesium promotes a stable perovskite phase with good mobility and lifetimes of the charge carriers.

In cooperation with the HZB Young Investigator Group of Prof. Steve Albrecht, these optimized CsPbI3 layers were used to demonstrate perovskite solar cells with an initial efficiency of more than 12 % and stable performance close to 11% for  over 1200 hours. “We have shown that inorganic perovskite absorbers might also be suitable for use in thin-film solar cells if they can be manufactured adequately. We believe that there is great room for further improvements”, says Unold.

Published in Advanced Energy Materials (2019):

"Low temperature synthesis of stable CsPbI3 perovskite layers for solar cells obtained by high throughput experimentation"; Pascal Becker, José A. Márquez, Justus Just, Amran Al-Ashouri, Charles Hages, Hannes Hempel, Marko Jošt, Steve Albrecht, Ronald Frahm and Thomas Unold.

arö

  • Copy link

You might also be interested in

  • Bright prospects for tin perovskite solar cells
    Science Highlight
    03.12.2025
    Bright prospects for tin perovskite solar cells
    Perovskite solar cells are widely regarded as the next generation photovoltaic technology. However, they are not yet stable enough in the long term for widespread commercial use. One reason for this is migrating ions, which cause degradation of the semiconducting material over time. A team from HZB and the University of Potsdam has now investigated the ion density in four different, widely used perovskite compounds and discovered significant differences. Tin perovskite semiconductors produced with an alternative solvent had a particular low ion density — only one tenth that of lead perovskite semiconductors. This suggests that tin-based perovskites could be used to make solar cells that are not only really environmentally friendly but also very stable.

  • Synchrotron radiation sources: toolboxes for quantum technologies
    Science Highlight
    01.12.2025
    Synchrotron radiation sources: toolboxes for quantum technologies
    Synchrotron radiation sources generate highly brilliant light pulses, ranging from infrared to hard X-rays, which can be used to gain deep insights into complex materials. An international team has now published an overview on synchrotron methods for the further development of quantum materials and technologies in the journal Advanced Functional Materials: Using concrete examples, they show how these unique tools can help to unlock the potential of quantum technologies such as quantum computing, overcome production barriers and pave the way for future breakthroughs.
  • Joint Kyiv Energy and Climate Lab goes live
    News
    28.11.2025
    Joint Kyiv Energy and Climate Lab goes live
    Helmholtz-Zentrum Berlin and the National University of Kyiv-Mohyla Academy established on 27 November a Joint Energy and Climate Lab.