HZB and Humboldt University agree to set up a catalysis laboratory

Part of the IRIS research labs will be equipped for research on catalysts. Photo

Part of the IRIS research labs will be equipped for research on catalysts. Photo © Jan Zappner

With approx. 4,500 square metres of laboratory, office and communication space, the IRIS research building offers optimal conditions for the research and development of complex material systems.

With approx. 4,500 square metres of laboratory, office and communication space, the IRIS research building offers optimal conditions for the research and development of complex material systems. © IRIS Adlershof

Helmholtz-Zentrum Berlin (HZB) and Humboldt-Universität zu Berlin (HU) have signed a cooperation agreement with the aim of establishing a joint research laboratory for catalysis in the IRIS research building of HU in Adlershof. The IRIS research building offers optimal conditions for the research and development of complex material systems.

Catalysts are the key to many technologies and processes needed to build a climate-neutral economy. A hotspot for catalysis research has been developing in Berlin's research landscape for some time. As part of the Excellence Initiative, new clusters such as UniSysCat have been created in which established research institutes bundle their activities and the chemical industry is involved through the BASCat laboratory. An important field of research is the production of "green" hydrogen: in order to produce hydrogen and synthetic fuels in a climate-neutral way using renewable energies, innovative catalysts are needed. The recently launched CatLab project, which is funded as part of the Hydrogen Strategy, is pursuing completely new approaches based on thin-film technologies that promise real leaps in innovation.

IRIS laboratories equipped for catalysis research

To further promote catalysis research in Berlin, Humboldt-Universität zu Berlin and HZB have now signed another cooperation agreement. Part of the IRIS laboratories in Berlin-Adlershof will be additionally equipped for the development and investigation of heterogeneous catalyst systems. IRIS Adlershof stands for Integrative Research Institute for the Sciences. With approximately 4,500 square metres of state-of-the-art laboratory, office and communication space, the IRIS research building offers optimal conditions for the research and development of complex material systems. Close cooperation is also planned in the field of thin-film technology, using additive manufacturing processes and nanostructuring and synthesis methods.

Innovations through interdisciplinary cooperation

In the IRIS research building, experts from different disciplines work closely together for a deep physical-chemical understanding of complex interfaces. This forms an excellent basis for the development of energy materials. The arrangement of the laboratories and offices as well as the spacious communication areas create the best conditions for the different disciplines to exchange ideas and learn from each other.

Cooperation agreement is also legally innovative

The cooperation between the HU and the HZB on the catalysis research laboratory is being structured on a public-law basis for the first time due to the recent amendment to the Berlin Higher Education Act on cooperation between scientific institutions. The procedure for recording, evaluating and documenting mutual cooperation contributions is simpler and less bureaucratic. This allows researchers to concentrate on their core task – doing science.

red.

  • Copy link

You might also be interested in

  • Green fabrication of hybrid materials as highly sensitive X-ray detectors
    Science Highlight
    08.05.2025
    Green fabrication of hybrid materials as highly sensitive X-ray detectors
    New bismuth-based organic-inorganic hybrid materials show exceptional sensitivity and long-term stability as X-ray detectors, significantly more sensitive than commercial X-ray detectors. In addition, these materials can be produced without solvents by ball milling, a mechanochemical synthesis process that is environmentally friendly and scalable. More sensitive detectors would allow for a reduction in the radiation exposure during X-ray examinations.
  • Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    News
    07.05.2025
    Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    The Federal Institute for Materials Research and Testing (BAM), the Helmholtz-Zentrum Berlin (HZB), and Humboldt University of Berlin (HU Berlin) have signed a memorandum of understanding (MoU) to establish the Berlin Battery Lab. The lab will pool the expertise of the three institutions to advance the development of sustainable battery technologies. The joint research infrastructure will also be open to industry for pioneering projects in this field.
  • BESSY II: Insight into ultrafast spin processes with femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Insight into ultrafast spin processes with femtoslicing
    An international team has succeeded at BESSY II for the first time to elucidate how ultrafast spin-polarised current pulses can be characterised by measuring the ultrafast demagnetisation in a magnetic layer system within the first hundreds of femtoseconds. The findings are useful for the development of spintronic devices that enable faster and more energy-efficient information processing and storage. The collaboration involved teams from the University of Strasbourg, HZB, Uppsala University and several other universities.