Tandem solar cells with perovskite: nanostructures help in many ways

Scanning electron microscopy of perovskite silicon tandem cells in cross-section with nanotexture and back-reflector layer (golden). 

Scanning electron microscopy of perovskite silicon tandem cells in cross-section with nanotexture and back-reflector layer (golden).  © P. Tockhorn/HZB

By the end of 2021, teams at HZB had presented perovskite silicon tandem solar cells with an efficiency close to 30 percent. This value was a world record for eight months, a long time for this hotly contested field of research. In the renowned journal Nature Nanotechnology, the scientists describe how they achieved this record value with nanooptical structuring and reflective coatings.


Tandem solar cells made of perovskite and silicon enable significantly higher efficiencies than silicon solar cells alone. Tandem cells from HZB have already achieved several world records. Most recently, in November 2021, HZB research teams achieved a certified efficiency of 29.8 % with a tandem cell made of perovskite and silicon. This was an absolute world record that stood unbeaten at the top for eight months. It was not until the summer of 2022 that a Swiss team at EPFL succeeded in surpassing this value.

Joined forces

Three HZB teams had worked closely together for the record-breaking tandem cell. Now they present the details in Nature Nanotechnology. The journal also invited them to write a research briefing, in which they summarise their work and give an outlook on future developments.

Textures improves the performance

"Our competences complement each other very well," says Prof. Dr. Christiane Becker, who developed the world record cell with the team led by Dr. Bernd Stannowski (silicon bottom cell) and Prof. Dr. Steve Albrecht (perovskite top cell). Becker's team introduced a nanooptical structure into the tandem cell: a gently corrugated nanotexture on the silicon surface. "Most surprising, this texture brings several advantages at once: it reduces reflection losses and ensures a more regular perovskite film formation," says Becker. In addition, a dielectric buffer layer on the back of the silicon reduces parasitic absorption at near-infrared wavelengths.

As a conclusion, the researchers hold: customised nanotextures can help to improve perowskite semiconductor materials on diverse levels. These results are not only valuable for tandem solar cells made of perovskite and silicon, but also for perovskite-based light-emitting diodes.




You might also be interested in

  • Green Deal Ukraina: HZB launches an Energy & Climate Project
    Green Deal Ukraina: HZB launches an Energy & Climate Project
    Green Deal Ukraina, funded by the German Federal Ministry of Education and Research, is working with partner institutions in Ukraine and Poland to establish an energy and climate think tank in the capital, Kiev. The aim is to provide independent and evidence-based advice on rebuilding a sustainable energy system in Ukraine. After all, the implementation of energy and climate legislation is a prerequisite for Ukraine's accession to the EU. The project started on 1 June 2023 and will run for four years.
  • Spintronics at BESSY II: Domain walls in magnetic nanowires
    Science Highlight
    Spintronics at BESSY II: Domain walls in magnetic nanowires
    Magnetic domains walls are known to be a source of electrical resistance due to the difficulty for transport electron spins to follow their magnetic texture. This phenomenon holds potential for utilization in spintronic devices, where the electrical resistance can vary based on the presence or absence of a domain wall. A particularly intriguing class of materials are half metals such as La2/3Sr1/3MnO3 (LSMO) which present full spin polarization, allowing their exploitation in spintronic devices. Still the resistance of a single domain wall in half metals remained unknown. Now a team from Spain, France and Germany has generated a single domain wall on a LSMO nanowire and measured resistance changes 20 times larger than for a normal ferromagnet such as Cobalt.
  • Bauwerkintegrierte Photovoltaik (BIPV) - Lösungen & Dienstleistungen
    Bauwerkintegrierte Photovoltaik (BIPV) - Lösungen & Dienstleistungen
    Im Rahmen der The smarter-e Europe/Intersolar Europe 2023 findet eine Vortragssession organisiert von der Allianz BIPV und dem Solarenergieförderverein Bayern e.V. zum Thema "Bauwerkintegrierte Photovoltaik (BIPV) - Lösungen und Dienstleistungen" statt.

    Datum: 14. Juni 2023, 15:30 -17:15 Uhr
    Ort:       Messe München, Halle A3, Stand A3.150/151