On the way to mass production: perovskite silicon tandem cells
The cluster facility operated at HZB allows to produce large-area perovskite/silicon tandem solar cells. This facility, the only one of its kind in the world, helps to develop new industry-related processes, materials and solar cells. © B. Stannowski / HZB
In order to transfer tandem solar cells from laboratory scale to production, HZB is cooperating with the solar module manufacturer Meyer Burger, which has great expertise in heterojunction technology (HJT) for silicon modules. Within the framework of this cooperation, mass production-ready silicon bottom cells based on heterojunction technology are to be combined with a top cell based on perovskite technology.
Meyer Burger is a manufacturer of high-quality solar modules based on silicon heterojunction technology (HJT). Meyer Burger's research and development team has already developed HJT cells in recent years together with Bernd Stannowski's team at the Helmholtz-Zentrum Berlin.
The HZB has great expertise in the field of perovskite solar cells. Recently, laboratory tandem solar cells combining heterojunction and perovskite have achieved record efficiencies of over 31 percent, largely due to the work of Steve Albrecht's group. However, such record-breaking tandem cells have only the laboratory-standard areas of 1 cm² and are partly produced with processes that are not scalable.
"We are therefore delighted to be cooperating with Meyer Burger to transfer this fantastic technology into application," says Bernd Stannowski, who heads the cooperation at HZB. A new cluster facility (KOALA) will also be used. This globally unique facility, funded by the German Federal Ministry of Economics and Climate Protection (BMWK) and the Federal Ministry of Education and Research (BMBF), makes it possible to produce perovskite/silicon tandem solar cells in a vacuum on industry-standard large wafers.
"Meyer Burger manufactures in Europe and thus creates high-quality jobs. In doing so, the company is exploiting technologies that were developed in Europe," says Rutger Schlatmann, director of the Photovoltaics Competence Centre Berlin (PVcomB) at HZB. The new cooperation agreement is set to run for three years.
red.
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=24366;sprache=en
- Copy link
-
Metallic nanocatalysts: what really happens during catalysis
Using a combination of spectromicroscopy at BESSY II and microscopic analyses at DESY's NanoLab, a team has gained new insights into the chemical behaviour of nanocatalysts during catalysis. The nanoparticles consisted of a platinum core with a rhodium shell. This configuration allows a better understanding of structural changes in, for example, rhodium-platinum catalysts for emission control. The results show that under typical catalytic conditions, some of the rhodium in the shell can diffuse into the interior of the nanoparticles. However, most of it remains on the surface and oxidises. This process is strongly dependent on the surface orientation of the nanoparticle facets.
-
Shedding light on insulators: how light pulses unfreeze electrons
Metal oxides are abundant in nature and central to technologies such as photocatalysis and photovoltaics. Yet, many suffer from poor electrical conduction, caused by strong repulsion between electrons in neighboring metal atoms. Researchers at HZB and partner institutions have shown that light pulses can temporarily weaken these repulsive forces, lowering the energy required for electrons mobility, inducing a metal-like behavior. This discovery offers a new way to manipulate material properties with light, with high potential to more efficient light-based devices.
-
Key technology for a future without fossil fuels
In June and July 2025, catalyst researcher Nico Fischer spent some time at HZB. It was his sabbatical, he was relieved of his duties as Director of the Catalysis Institute in Cape Town for several months and was able to focus on research only. His institute is collaborating with HZB on two projects that aim to develop environmentally friendly alternatives using innovative catalyst technologies. The questions were asked by Antonia Rötger, HZB.