On the way to mass production: perovskite silicon tandem cells

The cluster facility operated at HZB allows to produce large-area perovskite/silicon tandem solar cells. This facility, the only one of its kind in the world, helps to develop new industry-related processes, materials and solar cells.

The cluster facility operated at HZB allows to produce large-area perovskite/silicon tandem solar cells. This facility, the only one of its kind in the world, helps to develop new industry-related processes, materials and solar cells. © B. Stannowski / HZB

In order to transfer tandem solar cells from laboratory scale to production, HZB is cooperating with the solar module manufacturer Meyer Burger, which has great expertise in heterojunction technology (HJT) for silicon modules. Within the framework of this cooperation, mass production-ready silicon bottom cells based on heterojunction technology are to be combined with a top cell based on perovskite technology.

 

Meyer Burger is a manufacturer of high-quality solar modules based on silicon heterojunction technology (HJT). Meyer Burger's research and development team has already developed HJT cells in recent years together with Bernd Stannowski's team at the Helmholtz-Zentrum Berlin.

The HZB has great expertise in the field of perovskite solar cells. Recently, laboratory tandem solar cells combining heterojunction and perovskite have achieved record efficiencies of over 31 percent, largely due to the work of Steve Albrecht's group. However, such record-breaking tandem cells have only the laboratory-standard areas of 1 cm² and are partly produced with processes that are not scalable.

"We are therefore delighted to be cooperating with Meyer Burger to transfer this fantastic technology into application," says Bernd Stannowski, who heads the cooperation at HZB. A new cluster facility (KOALA) will also be used. This globally unique facility, funded by the German Federal Ministry of Economics and Climate Protection (BMWK) and the Federal Ministry of Education and Research (BMBF), makes it possible to produce perovskite/silicon tandem solar cells in a vacuum on industry-standard large wafers.

"Meyer Burger manufactures in Europe and thus creates high-quality jobs. In doing so, the company is exploiting technologies that were developed in Europe," says Rutger Schlatmann, director of the Photovoltaics Competence Centre Berlin (PVcomB) at HZB. The new cooperation agreement is set to run for three years.

red.


You might also be interested in

  • 14 parameters in one go: New instrument for optoelectronics
    Science Highlight
    21.02.2024
    14 parameters in one go: New instrument for optoelectronics
    An HZB physicist has developed a new method for the comprehensive characterisation of semiconductors in a single measurement. The "Constant Light-Induced Magneto-Transport (CLIMAT)" is based on the Hall effect and allows to record 14 different parameters of transport properties of negative and positive charge carriers. The method was tested now on twelve different semiconductor materials and will save valuable time in assessing new materials for optoelectronic applications such as solar cells.
  • Helmholtz Zentrum Berlin is a bicycle-friendly employer
    News
    21.02.2024
    Helmholtz Zentrum Berlin is a bicycle-friendly employer
    Since 2017, the German Cyclists' Federation (ADFC) has been awarding the EU-wide "Bicycle-Friendly Employer" certification. The Helmholtz-Zentrum Berlin has now been awarded the coveted silver seal. With this, the HZB wants to be even more attractive as an employer, especially for international applicants.

  • Sodium-ion batteries: How doping works
    Science Highlight
    20.02.2024
    Sodium-ion batteries: How doping works
    Sodium-ion batteries still have a number of weaknesses that could be remedied by optimising the battery materials. One possibility is to dope the cathode material with foreign elements. A team from HZB and Humboldt-Universität zu Berlin has now investigated the effects of doping with Scandium and Magnesium. The scientists collected data at the X-ray sources BESSY II, PETRA III, and SOLARIS to get a complete picture and uncovered two competing mechanisms that determine the stability of the cathodes.