Maria Skłodowska Curie Postdoctoral Fellowship for Artem Musiienko

Dr. Artem Musiienko has earned has earned a prestigious Maria Skłodowska Curie Postdoctoral Fellowship to improve lead free perovskite solar cells.

Dr. Artem Musiienko has earned has earned a prestigious Maria Skłodowska Curie Postdoctoral Fellowship to improve lead free perovskite solar cells. © F. Krawatzek /HZB

Dr. Artem Musiienko has earned a prestigious Maria Skłodowska Curie Postdoctoral Fellowship for his research project HyPerGreen. In the group of Prof. Antonio Abate, HZB, Musiienko will explore and improve lead-free perovskite solar cells with the goal to increase their efficiency to more than 20 %.  

Musiienko completed his doctorate in 2018 at Charles University in Prague on a topic related to semiconductor physics and subsequently worked there as a research assistant. In 2020, he moved to the HZB Institute for Silicon Photovoltaics, where he investigated defects in halide perovskites, among other things. He has contributed significantly to the enormous increases in the efficiency of halide perovskite solar cells, for which the HZB is now internationally renowned.

"However, those highly efficient halide perovskites contain small amounts of lead, a toxic heavy metal that must not be released into the environment," says Musiienko. But lead can be replaced with tin, which has been shown to be non-bioavailable and therefore harmless. So far, however, the efficiency and stability of tin perovskite solar cells are much lower in comparison. Musiienko now plans in his HyPerGreen project to significantly improve tin perovskite solar cells and to explore the mechanisms that limit charge transport in the bulk and at the interface of these materials. Musiienko will use the novel Photo-Hall method, he has recently developed at HZB. “At the moment, together with HZB, we patent this method”, he adds. The method is based on a combination of magnetic field and light and can be used to explore charge transport parameters and limiting factors of the material, which were unreachable otherwise. His goal is ambitious: In his projects he is aiming for efficiencies of over 20 %, a big step forward from the current record of 14.6 % (1).

(1): Efficiency record for tin perovskite solar cells: Jiang, X. et al. J. Am. Chem. Soc. 143 (29), 10970-10976 (2021))

 

arö


You might also be interested in

  • Green Deal Ukraina: HZB launches an Energy & Climate Project
    News
    07.06.2023
    Green Deal Ukraina: HZB launches an Energy & Climate Project
    Green Deal Ukraina, funded by the German Federal Ministry of Education and Research, is working with partner institutions in Ukraine and Poland to establish an energy and climate think tank in the capital, Kiev. The aim is to provide independent and evidence-based advice on rebuilding a sustainable energy system in Ukraine. After all, the implementation of energy and climate legislation is a prerequisite for Ukraine's accession to the EU. The project started on 1 June 2023 and will run for four years.
  • Bernd Rech elected Member of the Slovenian Academy of Engineering
    News
    07.06.2023
    Bernd Rech elected Member of the Slovenian Academy of Engineering
    In February 2023, the Scientific Director of Helmholtz-Zentrum Berlin was elected Corresponding Member of the Slovenian Academy of Engineering (IAS).

  • Bauwerkintegrierte Photovoltaik (BIPV) - Lösungen & Dienstleistungen
    Nachricht
    26.05.2023
    Bauwerkintegrierte Photovoltaik (BIPV) - Lösungen & Dienstleistungen
    Im Rahmen der The smarter-e Europe/Intersolar Europe 2023 findet eine Vortragssession organisiert von der Allianz BIPV und dem Solarenergieförderverein Bayern e.V. zum Thema "Bauwerkintegrierte Photovoltaik (BIPV) - Lösungen und Dienstleistungen" statt.

    Datum: 14. Juni 2023, 15:30 -17:15 Uhr
    Ort:       Messe München, Halle A3, Stand A3.150/151