Perovskite solar cells from the slot die coater - a step towards industrial production

The wet coating with a standard ink composition: the wet perovskite thin films (left) has a rib-like structure. The corresponding SEM image (right) of the annealed perovskite film shows inhomogeneities.

The wet coating with a standard ink composition: the wet perovskite thin films (left) has a rib-like structure. The corresponding SEM image (right) of the annealed perovskite film shows inhomogeneities. © HZB

The wet coating with the optimised ink composition (left) is nearly perfectly even. The corresponding SEM image (right) of the annealed perovskite film shows much less inhomogeneities.

The wet coating with the optimised ink composition (left) is nearly perfectly even. The corresponding SEM image (right) of the annealed perovskite film shows much less inhomogeneities. © HZB

Solar cells made from metal halide perovskites achieve high efficiencies and their production from liquid inks requires only a small amount of energy. A team led by Prof. Dr. Eva Unger at Helmholtz-Zentrum Berlin is investigating the production process. At the X-ray source BESSY II, the group has analyzed the optimal composition of precursor inks for the production of high-quality FAPbI3 perovskite thin films by slot-die coating. The solar cells produced with these inks were tested under real life conditions in the field for a year and scaled up to mini-module size.

Metal halide perovskites are considered to be a particularly low-cost and promising class of materials for next-generation solar modules. Perovskite solar cells can be produced with coating processes using liquid inks made from precursor materials and various solvents. After coating, the solvents evaporate and the perovskites crystallise to form a more or less homogeneous layer.

Options for upscaling

Prof. Dr. Eva Unger's team at Helmholtz-Zentrum Berlin has extensive expertise in solution-based processing methods and is investigating options for upscaling. "Perovskite photovoltaics is the best solution-processable PV technology available," says Eva Unger, "but we are only just beginning to understand how the complex interaction of the solvent components affects the quality of the perovskite layers."

Variations of viscosity

This is because when the halide perovskite layers are coated on large surfaces, unwanted inhomogeneities can occur, for example so-called ribbing structures. "By varying the viscosity of the ink, such effects can be minimised," says Jinzhao Li, who is doing his PhD with Unger. At BESSY II, he has investigated how different solvent combinations affect the crystallisation of the perovskite films. The best p-i-n-FAPbI3 perovskite solar cells thus achieve a certified efficiency of 22.3 % on a laboratory scale. Jinzhao Li also produced mini solar modules (active area of 12.6 cm2) with colleagues from the HySPRINT innovation lab and PVcomB, which achieved efficiencies of around 17 %.

Outdoor test for one year

Dr Carolin Ulbrich's team tested the optimised solar cells at PVcomB’s outdoor test facility for a whole year: In the process, the efficiency remained almost stable in winter and spring, and only dropped in the warmer summer months. "These tests of larger modules under real conditions give us valuable information on degradation mechanisms to then further improve the long-term stability of halide perovskite photovoltaics," says Eva Unger.

arö


You might also be interested in

  • “Research and development in times of war: not only possible, but crucial!”
    Interview
    18.06.2024
    “Research and development in times of war: not only possible, but crucial!”
    The Ukraine Recovery Conference took place in Berlin on 11 and 12 June. On a side-event representatives from Helmholtz, Fraunhofer and Leibniz discussed how research can contribute to the sustainable reconstruction of Ukraine.
    In this interview, Bernd Rech, scientific director at HZB, talks about the importance of research during the war and projects such as Green Deal Ukraina.

  • MXenes for energy storage: Chemical imaging more than just surface deep
    Science Highlight
    17.06.2024
    MXenes for energy storage: Chemical imaging more than just surface deep
    A new method in spectromicroscopy significantly improves the study of chemical reactions at the nanoscale, both on surfaces and inside layered materials. Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the investigation of chemical species adsorbed on the top layer (surface) or intercalated within the MXene electrode (bulk) with high chemical sensitivity. The method was developed by a HZB team led by Dr. Tristan Petit. The scientists demonstrated among others first SXM on MXene flakes, a material used as electrode in lithium-ion batteries.
  • New joint leadership for BESSY II
    News
    13.06.2024
    New joint leadership for BESSY II
    Andreas Jankowiak as new Technical Director and Facility Spokesperson Antje Vollmer share management responsibilities

    Prof. Andreas Jankowiak has been appointed Technical Director of BESSY II with a term of office of three years as of 1 June 2024 by resolution of the HZB board of directors. Antje Vollmer will start her second term as BESSY II Facility Spokesperson on 1 July 2024. Together, they form the new management duo to coordinate the scientific and technical development of the BESSY II X-ray source on behalf of the HZB management.