14 parameters in one go: New instrument for optoelectronics

The bright spheres symbolise bound charge carriers (negative and positive) in the material. The light beam separates these charges, which are then deflected in different ways in the applied magnetic field. With the CLIMAT method, around 14 different parameters of the transport properties in semiconductors can be measured with a single measurement, for example density, lifetime, diffusion lengths and mobility.

The bright spheres symbolise bound charge carriers (negative and positive) in the material. The light beam separates these charges, which are then deflected in different ways in the applied magnetic field. With the CLIMAT method, around 14 different parameters of the transport properties in semiconductors can be measured with a single measurement, for example density, lifetime, diffusion lengths and mobility. © Laura Canil

An HZB physicist has developed a new method for the comprehensive characterisation of semiconductors in a single measurement. The "Constant Light-Induced Magneto-Transport (CLIMAT)" is based on the Hall effect and allows to record 14 different parameters of transport properties of negative and positive charge carriers. The method was tested now on twelve different semiconductor materials and will save valuable time in assessing new materials for optoelectronic applications such as solar cells.

Solar cells, transistors, detectors, sensors and LEDs have all one thing in common: they are made of semiconductor materials whose charge carriers are only released when they are hit by light (photons). The photons knock electrons (negative charge carriers) out of their orbits, which move through the material until they are captured again after a certain time. Simultaneously, holes are created in the places where the electrons are missing - these holes behave like positively charged charge carriers and are also important for the performance of the respective application. The behaviour of negative and positive charge carriers in semiconductors often differs by orders of magnitude in terms of mobility, diffusion lengths and lifetime. Until now, the parameters of the transport properties had to be determined separately for each type of charge, using different measurement methods.

Single measurement

As part of his "Maria Skłodowska Curie Postdoctoral Fellowship", HZB physicist Dr Artem Musiienko has now developed a new method that can record all 14 parameters of positive and negative charge carriers in a single measurement. The "Constant Light-Induced Magneto-Transport (CLIMAT)" uses a magnetic field vertically through the sample and a constant light source for charge separation. The charge carriers move along an electric field and are deflected by the magnetic field perpendicular to their direction of movement (Hall effect), according to their mass, mobility and other properties. A total of 14 different properties can be determined from the signals and, in particular, the differences between the signals of the different charge carriers, Musiienko showed with a neat little system of equations.

p and n charge carriers

"CLIMAT thus provides a comprehensive insight into the complicated mechanisms of charge transport, both positive and negative charge carriers, with a single measurement. This enables us to evaluate new types of semiconductor materials much more quickly, for example for their suitability as solar cells or for other applications," says Musiienko.

Testing different semiconductor materials

To demonstrate the broad applicability of the new method, research teams at HZB, the University of Potsdam and other institutions in the USA, Switzerland, the UK and Ukraine have now used it to characterise a total of twelve very different semiconductor materials, including silicon, halide perovskite films, organic semiconductors such as Y6, semi-insulators, self-assembled monolayers and nanoparticles. The results have now been published in Nature Communications.

Outlook: a very compact instrument

Independent experts such as Prof Vitaly Podzorov from Rutgers University, USA, awarded the CLIMAT method 15 out of 16 points in Nature Electronics and consider the new method to be groundbreaking. In particular, CLIMAT eliminates many of the steps previously required for different measurements thus saving valuable time. In early 2024, the CLIMAT method was approved for patenting by the European Patent Office under the number EP23173681.0. "Negotiations are currently underway with companies about licensing our method," says Musiienko. The goal is a compact measuring device, about the size of a notebook.

arö

  • Copy link

You might also be interested in

  • Susanne Nies appointed to EU advisory group on Green Deal
    News
    12.11.2025
    Susanne Nies appointed to EU advisory group on Green Deal
    Dr. Susanne Nies heads the Green Deal Ukraina project at HZB, which aims to support the development of a sustainable energy system in Ukraine. The energy expert has now also been appointed to the European Commission's scientific advisory group to comment on regulatory burdens in connection with the net-zero target (DG GROW).

  • The future of corals – what X-rays can tell us
    Interview
    12.11.2025
    The future of corals – what X-rays can tell us
    This summer, it was all over the media. Driven by the climate crisis, the oceans have now also passed a critical point, the absorption of CO2 is making the oceans increasingly acidic. The shells of certain sea snails are already showing the first signs of damage. But also the skeleton structures of coral reefs are deteriorating in more acidic conditions. This is especially concerning given that corals are already suffering from marine heatwaves and pollution, which are leading to bleaching and finally to the death of entire reefs worldwide. But how exactly does ocean acidification affect reef structures?

    Prof. Dr. Tali Mass, a marine biologist from the University of Haifa, Israel, is an expert on stony corals. Together with Prof. Dr. Paul Zaslansky, X-ray imaging expert from Charité Berlin, she investigated at BESSY II the skeleton formation in baby corals, raised under different pH conditions. Antonia Rötger spoke online with the two experts about the results of their recent study and the future of coral reefs.

  • Long-term stability for perovskite solar cells: a big step forward
    Science Highlight
    07.11.2025
    Long-term stability for perovskite solar cells: a big step forward
    Perovskite solar cells are inexpensive to produce and generate a high amount of electric power per surface area. However, they are not yet stable enough, losing efficiency more rapidly than the silicon market standard. Now, an international team led by Prof. Dr. Antonio Abate has dramatically increased their stability by applying a novel coating to the interface between the surface of the perovskite and the top contact layer. This has even boosted efficiency to almost 27%, which represents the state-of-the-art. After 1,200 hours of continuous operation under standard illumination, no decrease in efficiency was observed. The study involved research teams from China, Italy, Switzerland and Germany and has been published in Nature Photonics.