Helmholtz-Gemeinschaft fördert Kooperation zwischen HZB und Slowenien zu Perowskit-Silizium-Tandem-Solarzellen

Marko Jošt hat seine Doktorarbeit zu Tandem-Solarzellen bei Steve Albrecht im HySPRINT-Labor absolviert (Bild). Nun wird er an der Universität in Lubljana weiter forschen.

Marko Jošt hat seine Doktorarbeit zu Tandem-Solarzellen bei Steve Albrecht im HySPRINT-Labor absolviert (Bild). Nun wird er an der Universität in Lubljana weiter forschen. © M. Setzpfandt/ HZB

Ein HZB-Team hat erfolgreich Fördermittel aus dem "Helmholtz European Partnering"-Programm der Helmholtz-Gemeinschaft eingeworben, um die Zusammenarbeit mit der Universität Ljubljana, Slowenien, auszubauen. Thema der Kooperation sind Tandem-Solarzellen aus Perowskit und Silizium und insbesondere ihre genaue Charakterisierung.

Aktuell bestehen die meisten Solarmodule aus Silizium, einem Halbleiter, der vor allem die roten Anteile des Sonnenspektrums zur Stromerzeugung nutzt. Große Chancen auf noch höhere Wirkungsgrade verspricht daher die Kombination von Silizium mit Perowskit-Halbleitern. Denn Halbleitermaterialien aus dieser Materialklasse wandeln insbesondere die energiereichen, blauen Anteile des Spektrums in Elektrizität um.

Nun hat der HZB-Physiker Prof. Dr. Steve Albrecht Mittel der Helmholtz-Gemeinschaft eingeworben, um solche Tandem-Solarzellen mit Partnern von der Universität Ljubljana, Slowenien, zu untersuchen. Das Projekt TAPAS wird im Programm „Helmholtz European Partnering“ für die kommenden drei Jahre mit jeweils 250.000 Euro jährlich gefördert. Nach einer Evaluierung kann die Förderdauer um zwei Jahre verlängert werden. Das Programm „Helmholtz European Partnering“ wurde ins Leben gerufen, um den europäischen Forschungsraum - speziell die Kooperation mit Ländern in Süd-, Mittel- und Osteuropa - zu stärken.

Der Name TAPAS steht für „Tandem Perovskite and Silicon solar cells - Advanced opto-electrical characterization, modeling and stability“.  Zusammen mit der optoelektrischen Modellierung sollen hocheffiziente und stabile Tandem-Solarzellen der nächsten Generation für das Energiesystem der Zukunft entwickelt werden.

Die Arbeitsgruppe für Photovoltaik und Optoelektronik der Universität Ljubljana (LPVO, geleitet von Prof. Dr Marko Topič) und das Helmholtz-Zentrum Berlin haben in den vergangenen Jahren eine sehr erfolgreiche Zusammenarbeit aufgebaut, die durch diese Förderung weiter gestärkt wird. Ziel der Kooperation ist es, die Prozesse zu analysieren, die die Stabilität der Module im Feld beeinträchtigen. 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Science Highlight
    07.11.2025
    Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und liefern viel Leistung pro Fläche. Allerdings sind sie bisher noch nicht stabil genug für den Langzeit-Einsatz. Nun hat ein internationales Team unter der Leitung von Prof. Dr. Antonio Abate durch eine neuartige Beschichtung der Grenzfläche zwischen Perowskitschicht und dem Top-Kontakt die Stabilität drastisch erhöht. Dabei stieg der Wirkungsgrad auf knapp 27 Prozent, was dem aktuellen state-of-the-art entspricht. Dieser hohe Wirkungsgrad nahm auch nach 1.200 Stunden im Dauerbetrieb nicht ab. An der Studie waren Forschungsteams aus China, Italien, der Schweiz und Deutschland beteiligt. Sie wurde in Nature Photonics veröffentlicht.
  • Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Nachricht
    22.10.2025
    Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Wir freuen uns sehr und gratulieren unserer studentischen Mitarbeiterin Luca Raschke zum erfolgreich abgeschlossenen Masterstudium der Regenerativen Energien an der Hochschule für Technik und Wirtschaft Berlin – und das mit Auszeichnung!
  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in Phosphor nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.