Ein elektronischer Regenbogen: Perowskit-Spektrometer mit Tintenstrahldrucker

© AdobeStock_180217487_Rainbow colored equalizer effect

Mit drei Perowskit-Vorläufertinten können unterschiedliche  Metallhalogenidperowskite gedruckt werden.

Mit drei Perowskit-Vorläufertinten können unterschiedliche  Metallhalogenidperowskite gedruckt werden. © 10.1002/adem.202101111

Mit einem Tintenstrahldruckverfahren haben Teams aus dem Innovation Lab HySPRINT am Helmholtz-Zentrum Berlin (HZB) und der Humboldt-Universität zu Berlin (HU) Photodetektoren auf Basis von hybriden Perowskit-Halbleitern produziert. Durch gezieltes Abmischen von nur drei „Tinten“ konnten sie die Eigenschaften des Halbleiters während des Druckvorgangs präzise einstellen. Der Tintenstrahldruck ist in der Industrie eine etablierte Herstellungsmethode, die eine schnelle und kostengünstige Verarbeitung von Lösungen ermöglicht. Die Ausweitung von der großflächigen Beschichtung auf die kombinatorische Materialsynthese eröffnet neue Möglichkeiten für die Herstellung verschiedener elektronischer Komponenten in einem einzigen Druckschritt.

Metallhalogenid-Perowskite sind eine faszinierende Materialklasse mit einem breiten Spektrum von möglichen Anwendungen in der Optoelektronik und Photovoltaik. Die Herstellung elektronischer Bauteile mit diesem Material ist besonders attraktiv, weil sie aus einer Lösung, d. h. aus einer Tinte, möglich ist. Kommerziell erhältliche Salze werden in einem Lösungsmittel gelöst und dann auf ein Substrat aufgebracht. Die Gruppe um Prof. Emil List-Kratochvil, Leiter einer gemeinsamen Forschungsgruppe am HZB und der HU, konzentriert sich darauf, solche Bauelemente mit Hilfe von Herstellungsverfahren wie dem Tintenstrahldruck herzustellen. Der Drucker trägt die Tinte auf ein Substrat auf und nach dem Trocknen bildet sich ein dünner Halbleiterfilm. Durch die Kombination mehrerer Schritte mit verschiedenen Materialien lassen sich Solarzellen, LEDs oder Photodetektoren in wenigen Minuten herstellen.

Kombinatorischer Ansatz

Der Tintenstrahldruck ist in der Industrie bereits eine etablierte Technik, nicht nur für Zeitungen und Zeitschriften, sondern auch für Funktionsmaterialien. Metallhalogenid-Perowskite sind für den Tintenstrahldruck besonders interessant, da ihre Eigenschaften durch ihre chemische Zusammensetzung eingestellt werden können. Forschungsgruppen am HZB haben bereits Solarzellen und LEDs aus Perowskiten im Tintenstrahldruck hergestellt. Diese Fähigkeiten wurden 2020 weiter ausgebaut, als die Gruppe von Dr. Eva Unger erstmals einen kombinatorischen Ansatz für den Tintenstrahl-Druck nutzte, um verschiedene Perowskit-Zusammensetzungen auf der Suche nach einem besseren Solarzellenmaterial zu drucken.

Gedrucktes Spektrometer

In der aktuellen Arbeit hat das Team um Prof. Emil List-Kratochvil nun eine spannende Anwendung für eine große Perowskit-Serie in wellenlängenselektiven Photodetektoren gefunden. "Der kombinatorische Tintenstrahldruck kann nicht nur zum Screening verschiedener Materialzusammensetzungen für Solarzellenmaterialien verwendet werden", erklärt er, "sondern ermöglicht uns auch die Herstellung mehrerer, separater Bauelemente in einem einzigen Druckschritt." Im Hinblick auf ein industrielles Verfahren würde dies die Produktion der unterschiedlichsten elektronischen Bauelemente ermöglichen. In Kombination mit gedruckten elektronischen Schaltkreisen würden Photodetektoren ein einfaches Spektrometer bilden: papierdünn, auf eine beliebige Oberfläche gedruckt, potenziell flexibel, ohne die Notwendigkeit eines Prismas oder Gitters zur Trennung der eingehenden Wellenlängen.

 

Vincent Schröder und Felix Hermerschmidt


Das könnte Sie auch interessieren

  • BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Science Highlight
    09.07.2024
    BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Feststoffbatterien können mehr Energie speichern und sind sicherer als Batterien mit flüssigen Elektrolyten. Allerdings halten sie nicht so lange und ihre Kapazität nimmt mit jedem Ladezyklus ab. Doch das muss nicht so bleiben: Forscherinnen und Forscher sind den Ursachen bereits auf der Spur. In der Fachzeitschrift ACS Energy Letters stellt ein Team des HZB und der Justus-Liebig-Universität Gießen eine neue Methode vor, um elektrochemische Reaktionen während des Betriebs einer Feststoffbatterie mit Photoelektronenspektroskopie an BESSY II genau zu verfolgen. Die Ergebnisse helfen, Batteriematerialien und -design zu verbessern.

  • HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Nachricht
    09.07.2024
    HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Auf der Suche nach dem perfekten Katalysator bekommt HZB-Forscher Robert Seidel nun Rückenwind – durch einen hochkarätigen ERC Consolidator Grant. In der Titelgeschichte stellen wir vor, warum die Röntgenquelle BESSY II für sein Vorhaben eine wichtige Rolle spielt.

  • Wertstoffe aus Abfall: Auf die richtigen Elektrolyte kommt es an
    Science Highlight
    01.07.2024
    Wertstoffe aus Abfall: Auf die richtigen Elektrolyte kommt es an
    Stellt man aus Biomasse Biodiesel her, fällt als Nebenprodukt Glycerin an. Bislang wird dieses Nebenprodukt jedoch wenig genutzt, obwohl es durch Oxidation in photoelektrochemischen Reaktoren (PEC) zu wertvolleren Chemikalien verarbeitet werden könnte. Der Grund dafür: geringe Effizienz und Selektivität. Nun hat ein Team um Dr. Marco Favaro vom Institut für Solare Brennstoffe am HZB den Einfluss der Elektrolyte auf die Effizienz der Glycerin-Oxidations-Reaktion in PEC-Reaktoren untersucht und Ergebnisse erhalten, die dabei helfen, effizientere und umweltfreundlichere Produktionsverfahren zu entwickeln.