International consortium to advance decarbonisation of the aviation sector

© Sasol

JOHANNESBURG, SOUTH AFRICA – 24 May 2022: CARE-O-SENE research project will develop advanced catalysts for sustainable aviation fuels

The company Sasol and Helmholtz-Zentrum Berlin (HZB) will lead a consortium to develop and optimise next-generation catalysts that will play a key role in decarbonising the aviation sector through sustainable aviation fuels (SAF).

At a ceremony at Sasol’s global headquarters in Johannesburg today, South African President Cyril Ramaphosa and German Chancellor Olaf Scholz attended the launch of CARE-O-SENE (Catalyst Research for Sustainable Kerosene) research project, to be funded by the German Federal Ministry of Education and Research (BMBF) and Sasol.

Sasol joins forces with five other world-leading organisations in Germany and South Africa to accelerate the development of catalysts that are essential to produce green kerosene on a commercial scale through Fischer-Tropsch (FT) technology.

“We are delighted to have been selected to lead this important project,” said Fleetwood Grobler, President and Chief Executive Officer of Sasol Limited. “Our expertise in FT technology and catalysts makes us the ideal partner to help Germany and the world decarbonise the aviation sector and make it sustainable over the long-term.”

Prof. Dr. Bernd Rech, Scientific Managing Director of HZB adds, “CARE-O-SENE will enable us to accelerate innovation in a crucial field of green energy. This can only be achieved in a global partnership by deeply integrating fundamental research and technology development on an industry relevant scale.”

Other CARE-O-SENE project partners include the Fraunhofer Institute for Ceramic Technologies and Systems (IKTS), the Karlsruhe Institute of Technology (KIT), the University of Cape Town, Department of Chemical Engineering (UCT) and INERATEC GmbH. The consortium expresses its sincere gratitude to the German Federal Ministry of Education and Research for supporting these important efforts.

CARE-O-SENE will run for three years and pursues the goal of setting the course for large-scale commercialisation of green kerosene production by 2025 with its research on catalysts. Catalysts are used to speed up chemical reactions, increase the yield and improve the quality of refined products. The new FT catalysts are expected to increase the fuel yield of the process to over 80 percent, thereby optimising use of resources.

Unlike conventional kerosene derived from fossil feedstocks, SAF can be made from green hydrogen and sustainable carbon dioxide sources. Developing SAF is key to a sustainable decarbonisation of the hard-to-abate aviation industry, and the main lever for net zero aviation. The underlying technology to developing SAF at scale from green hydrogen and sustainable carbon sources is FT technology, in which Sasol has been a global leader for more than 70 years.

(sz)

  • Copy link

You might also be interested in

  • Joint Kyiv Energy and Climate Lab goes live
    News
    28.11.2025
    Joint Kyiv Energy and Climate Lab goes live
    Helmholtz-Zentrum Berlin and the National University of Kyiv-Mohyla Academy established on 27 November a Joint Energy and Climate Lab.
  • How carbonates influence CO2-to-fuel conversion
    Science Highlight
    25.11.2025
    How carbonates influence CO2-to-fuel conversion
    Researchers from the Helmholtz Zentrum Berlin (HZB) and the Fritz Haber Institute of the Max Planck Society (FHI) have uncovered how carbonate molecules affect the conversion of CO2 into valuable fuels on gold electrocatalysts. Their findings reveal key molecular mechanisms in CO2 electrocatalysis and hydrogen evolution, pointing to new strategies for improving energy efficiency and reaction selectivity.

  • Peat as a sustainable precursor for fuel cell catalyst materials
    Science Highlight
    25.11.2025
    Peat as a sustainable precursor for fuel cell catalyst materials
    Iron-nitrogen-carbon catalysts have the potential to replace the more expensive platinum catalysts currently used in fuel cells. This is shown by a study conducted by researchers from the Helmholtz-Zentrum Berlin (HZB), Physikalisch-Technische Bundesanstalt (PTB) and universities in Tartu and Tallinn, Estonia. At BESSY II, the team observed the formation of complex microstructures within various samples. They then analysed which structural parameters were particularly important for fostering the preferred electrochemical reactions. The raw material for such catalysts is well decomposed peat.