Andrea Denker is Professor of "Accelerator Physics for Medicine"

Prof. Dr. Andrea Denker is the head of the department "Proton Therapy" at HZB.

Prof. Dr. Andrea Denker is the head of the department "Proton Therapy" at HZB. © HZB/ M. Setzpfandt

The Beuth Hochschule für Technik Berlin and the Helmholtz-Zentrum Berlin (HZB) have appointed Prof. Dr. Andrea Denker to the joint professorship "Accelerator Physics for Medicine" as of October 1, 2018. Since 2006, Andrea Denker is head of the department "Proton Therapy" at the HZB, which operates the accelerator for eye tumor therapy. The therapy, offered in cooperation with the Charité - Universitätsmedizin Berlin and the HZB, is unique in Germany.

As part of her professorship, Andrea Denker is taking on lectures in the "Physical Technology - Medical Physics" course at Beuth University. In the current winter semester she offers the lecture "Atomic and Nuclear Physics" for Bachelor students.

Even before her appointment, Andrea Denker was a lecturer at the university. "I enjoy this job very much and the contact with the students is very enriching for me and my team at HZB," says Denker. The appointment now creates an even closer connection to the university. "We are already looking forward to many interesting theses that will be written at the proton accelerator at the HZB.

Andrea Denker studied and received her doctorate in physics at the University of Stuttgart. Then she worked at the CSNSM (Centre de Sciences Nucléaires et de Sciences de la Matière) in Orsay, France. In 1995 Andrea Denker started as a scientist at the ion accelerator ISL. Among other things, she calculated and developed the beam parameters for eye tumor therapy, which was launched 20 years ago.

(sz)

  • Copy link

You might also be interested in

  • Iridium-free catalysts for acid water electrolysis investigated
    Science Highlight
    13.08.2025
    Iridium-free catalysts for acid water electrolysis investigated
    Hydrogen will play an important role, both as a fuel and as a raw material for industry. However, in order to produce relevant quantities of hydrogen, water electrolysis must become feasible on a multi-gigawatt scale. One bottleneck is the catalysts required, with iridium in particular being an extremely rare element. An international collaboration has therefore investigated iridium-free catalysts for acidic water electrolysis based on the element cobalt. Through investigations with various methods, among them experiments at the LiXEdrom at the BESSY II X-ray source in Berlin, they were able to elucidate processes that take place during water electrolysis in a cobalt-iron-lead oxide material as the anode. The study is published in Nature Energy.
  • Self assembling monolayer can improve lead-free perovskite solar cells too
    Science Highlight
    04.08.2025
    Self assembling monolayer can improve lead-free perovskite solar cells too
    Tin perovskite solar cells are not only non-toxic, but also potentially more stable than lead-containing perovskite solar cells. However, they are also significantly less efficient. Now, an international team has succeeded in reducing losses in the lower contact layer of tin perovskite solar cells: The scienstists identified chemical compounds that self-assemble into a molecular layer that fits very well with the lattice structure of tin perovskites. On this monolayer, tin perovskite with excellent optoelectronic quality can be grown, which increases the performance of the solar cell.
  • Berlin Science Award goes to Philipp Adelhelm
    News
    24.07.2025
    Berlin Science Award goes to Philipp Adelhelm
    Battery researcher Prof. Dr. Philipp Adelhelm has been awarded the 2024 Berlin Science Award. He is a professor at the Institute of Chemistry at Humboldt University in Berlin (HU) and heads a joint research group at HU and the Helmholtz Zentrum Berlin (HZB). The materials scientist and electrochemist is investigating sustainable batteries, which play a key role in the success of the energy transition. He is one of the leading international experts in the field of sodium-ion batteries.