The 4000th eye tumour patient treated with protons at HZB

Overview: Number of patients treated with prontons at HZB from 1998 to 2020.  

Overview: Number of patients treated with prontons at HZB from 1998 to 2020.   © HZB/S. Kodalle

On 19 February 2021, the 4000th eye tumour patient received irradiation with protons, performed by a joint team from Helmholtz-Zentrum Berlin (HZB) and Charité - Universitätsmedizin Berlin. The number of patients treated in 2020 remained at the previous year's level despite the more difficult corona conditions. The treatment in Berlin-Wannsee is only available for uveal melanomas of the eye. The proton accelerator at HZB is the only therapy site for this disease in Germany.

For more than 20 years, Charité - Universitätsmedizin Berlin and Helmholtz-Zentrum Berlin (HZB) have jointly offered irradiation of eye tumours with protons. For this purpose, the HZB operates a proton accelerator, while the medical care of patients is provided by the Charité.

"We congratulate the joint team on this great success and thank them for doing everything they could under the difficult pandemic conditions to maintain the operation of the life-saving eye tumour therapy," says Prof. Bernd Rech, spokesman for the scientific management of HZB. 

500 to 600 people contract malignant uveal melanoma in Germany every year. In 97 percent of cases, the tumour can be completely destroyed by irradiation with protons. In most cases, not only the eye but also the vision can be preserved to a satisfactory degree. Radiation with protons is a particularly effective method: the energy of the proton beam can be adjusted in such a way that practically only the tumour receives the radiation, while the surrounding healthy tissue is spared.

sz


You might also be interested in

  • A new way to control the magnetic properties of rare earth elements
    Science Highlight
    17.07.2024
    A new way to control the magnetic properties of rare earth elements
    The special properties of rare earth magnetic materials are due to the electrons in the 4f shell. Until now, the magnetic properties of 4f electrons were considered almost impossible to control. Now, a team from HZB, Freie Universität Berlin and other institutions has shown for the first time that laser pulses can influence 4f electrons- and thus change their magnetic properties. The discovery, which was made through experiments at EuXFEL and FLASH, opens up a new way to data storage with rare earth elements.
  • BESSY II shows how solid-state batteries degrade
    Science Highlight
    09.07.2024
    BESSY II shows how solid-state batteries degrade
    Solid-state batteries have several advantages: they can store more energy and are safer than batteries with liquid electrolytes. However, they do not last as long and their capacity decreases with each charge cycle. But it doesn't have to stay that way: Researchers are already on the trail of the causes. In the journal ACS Energy Letters, a team from HZB and Justus-Liebig-Universität, Giessen, presents a new method for precisely monitoring electrochemical reactions during the operation of a solid-state battery using photoelectron spectroscopy at BESSY II. The results help to improve battery materials and design.
  • Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    News
    19.06.2024
    Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    On June 17, 2024, the Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) was officially inaugurated in Jena in the presence of Wolfgang Tiefensee, Minister for Economy, Science, and Digital Society of the Free State of Thuringia. The institute was founded by the Helmholtz Center Berlin for Materials and Energy (HZB) in cooperation with the Friedrich Schiller University Jena. It is dedicated to developing sustainable polymer materials for energy technologies, which are expected to play a key role in the energy transition and support Germany’s goal of becoming climate-neutral by 2045.