Oxford PV collaborates with HZB to move perovskite solar cells closer to commercialisation

Oxford PV – The Perovskite Company's industrial site in Brandenburg an der Havel, Germany where the company is working rapidly to transfer its advanced perovskite on silicon tandem solar cell technology to an industrial scale process.

Oxford PV – The Perovskite Company's industrial site in Brandenburg an der Havel, Germany where the company is working rapidly to transfer its advanced perovskite on silicon tandem solar cell technology to an industrial scale process. © Oxford PV

Perovskite solar technology leader Oxford PV collaborates with leading German research centre to support the accelerated transfer of its technology into silicon cell manufacturing lines.

Oxford PVTM – The Perovskite CompanyTM, the leader in the field of perovskite solar cells, today announced its collaboration with Helmholtz-Zentrum Berlin (HZB), the leading German research centre focused on energy materials research.

Oxford PV has made considerable progress in transferring its advanced perovskite on silicon tandem solar cell technology from its laboratory in Oxford, UK to an industrial scale process at its site in Brandenburg an der Havel, Germany.

HZB’s extensive expertise in silicon heterojunctions solar cell technology, will support Oxford PV to further optimise its perovskite on silicon tandem solar cell technology, and demonstrate production scale up, to ensure ease of integration into large scale silicon solar cell and module production.

“Working with HZB to understand solar cell manufacturers’ silicon cells, will allow Oxford PV’s perovskite on silicon tandem formation to be fully optimised, to ensure the most efficient tandem solar cell, and the easy transfer of our technology into our commercial partner’s industrial processes, commented Chris Case, Chief Technology Officer, at Oxford PV,

“Oxford PV is now in the final stage of commercialising its perovskite photovoltaic solution, which has the potential to enable efficiency gains that will transform the economics of silicon photovoltaic technology globally.”

Rutger Schlatmann, Director of the PVcomB institute at HZB, said, “HZB believe that perovskites present a significant opportunity to the future of photovoltaics. For this reason, at our new innovation lab - HySPRINT, we have significantly increased our expertise and attracted some of the most promising young scientists in this field. HZB’s collaboration with Oxford PV is strategically important to the institute, as Oxford PV is the ideal partner to further develop our solar cell technology knowledge and help support the commercialisation of tandem silicon perovskite photovoltaic cells.”

More Information:

  • Oxford PV
  • PVcomB
  • HySPRINT-a Helmholtz Innovation Lab

Oxford PV/HZB

  • Copy link

You might also be interested in

  • What Zinc concentration in teeth reveals
    Science Highlight
    19.02.2026
    What Zinc concentration in teeth reveals
    Teeth are composites of mineral and protein, with a bulk of bony dentin that is highly porous. This structure is allows teeth to be both strong and sensitive. Besides calcium and phosphate, teeth contain trace elements such as zinc. Using complementary microscopy imaging techniques, a team from Charité Berlin, TU Berlin and HZB has quantified the distribution of natural zinc along and across teeth in 3 dimensions. The team found that, as porosity in dentine increases towards the pulp, zinc concentration increases 5~10 fold. These results help to understand the influence of widely-used zinc-containing biomaterials (e.g. filling) and could inspire improvements in dental medicine.
  • Element cobalt exhibits surprising properties
    Science Highlight
    11.02.2026
    Element cobalt exhibits surprising properties
    The element cobalt is considered a typical ferromagnet with no further secrets. However, an international team led by HZB researcher Dr. Jaime Sánchez-Barriga has now uncovered complex topological features in its electronic structure. Spin-resolved measurements of the band structure (spin-ARPES) at BESSY II revealed entangled energy bands that cross each other along extended paths in specific crystallographic directions, even at room temperature. As a result, cobalt can be considered as a highly tunable and unexpectedly rich topological platform, opening new perspectives for exploiting magnetic topological states in future information technologies.
  • A record year for our living lab for building-integrated PV
    News
    27.01.2026
    A record year for our living lab for building-integrated PV
    In 2025, our solar facade in Berlin-Adlershof generated more electricity than in any of the previous four years of operation.