Towards the Climate Neutral City: Independent consulting office for integrating photovoltaics into buildings

New solutions are available to integrate PV into the building skin. One beautiful example is the Copenhagen International School.

New solutions are available to integrate PV into the building skin. One beautiful example is the Copenhagen International School. © Philippe Vollichard/EPFL/Kromatix by Swissinso

Dr. Björn Rau und Dr. Markus Sauerborn from the consulting office.

Dr. Björn Rau und Dr. Markus Sauerborn from the consulting office. © Silvia Zerbe/HZB

The Helmholtz-Zentrum Berlin is opening a national consulting office for integrating photovoltaics into buildings (BAIP) this spring. The consulting office will support building owners, architects, and municipal planners in activating building envelopes for power generation. The project is being funded by the Helmholtz Association over a period of four years as part of its knowledge transfer programme.

In order to achieve the climate targets, the building stock must be designed to be almost climate-neutral by 2050. That's ambitious, but feasible. In future, buildings must actively contribute to energy supply and energy storage. However, roof areas for conventional solar modules are only available to a limited extent, especially in cities, while other building surfaces have hardly been utilised to generate electricity to date. Power generation by means of building-integrated-photovoltaics can blend in with the design and construction of the building skin and roof area. It is decentralised and generates electricity where it is consumed. This technique will need to be widely applied in the coming years.

Independent service agency

“From our discussions with involved actors in the construction sector, we know that many architecture firms find it difficult to provide the necessary specialist knowledge”, explains Dr. Björn Rau, Deputy Director of the HZB PVcomB Institute and responsible for the project. So far, there has been no independent service agency that prepares, evaluates, and classifies current information in order to offer independent consultancy to architects, planners, building owners, investors, and urban developers. Product and financial independence are essential for acceptance of the service and also represent a unique feature. ”Until now, consulting services have only been provided by manufacturers and distributors of solar modules. They do not guarantee completeness and an entire overview”, says Dr. Markus Sauerborn, who is responsible for knowledge transfer at the HZB.

HZB-Expertise in Photovoltaics

"The HZB has been a leader in photovoltaic research for many years. With the BAIP consultancy service, we are also fulfilling a mission, namely to makes sure the knowledge gained from research contributes to society for its tangible benefit”, says Prof. Dr. Bernd Rech, Scientific Director of the HZB.

Competent and strong partners

As a project partner, the HZB has been able to involve important representatives from the fields of construction, planning, and sustainability, including the Federal Chamber of German Architects, the Berlin Chamber of Architects (Architektenkammer Berlin), the German Sustainable Building Council (DGNB), the Reiner Lemoine Institute, the HTW Berlin University of Applied Sciences as well as the Alliance for building-integrated photovoltaics (Alliance BIPV). These partners not only have a great deal of expertise, they also reach the relevant target groups.

Dialogue and training

The consulting office will be set up on the HZB Adlershof campus in the immediate vicinity of PV research and technology companies. However, consultations can also take place at client sites. The service office will promote dialogue between researchers, manufacturers, architects, and end customers. In addition to direct consultancy, the service office will also offer advanced training and workshops designed in close consultation with project partners to meet the needs of participants.

arö

  • Copy link

You might also be interested in

  • Successful master's degree in IR thermography on solar facades
    News
    22.10.2025
    Successful master's degree in IR thermography on solar facades
    We are delighted to congratulate our student employee Luca Raschke on successfully completing her Master's degree in Renewable Energies at the Hochschule für Technik und Wirtschaft Berlin - and with distinction!
  • BESSY II: Phosphorous chains – a 1D material with 1D electronic properties
    Science Highlight
    21.10.2025
    BESSY II: Phosphorous chains – a 1D material with 1D electronic properties
    For the first time, a team at BESSY II has succeeded in demonstrating the one-dimensional electronic properties of a material through a highly refined experimental process. The samples consisted of short chains of phosphorus atoms that self-organise at specific angles on a silver substrate. Through sophisticated analysis, the team was able to disentangle the contributions of these differently aligned chains. This revealed that the electronic properties of each chain are indeed one-dimensional. Calculations predict an exciting phase transition to be expected as soon as these chains are more closely packed. While material consisting of individual chains with longer distances is semiconducting, a very dense chain structure would be metallic.
  • Did marine life in the palaeocene use a compass?
    Science Highlight
    20.10.2025
    Did marine life in the palaeocene use a compass?
    Some ancient marine organisms produced mysterious magnetic particles of unusually large size, which can now be found as fossils in marine sediments. An international team has succeeded in mapping the magnetic domains on one of such ‘giant magnetofossils’ using a sophisticated method at the Diamond X-ray source. Their analysis shows that these particles could have allowed these organisms to sense tiny variations in both the direction and intensity of the Earth’s magnetic field, enabling them to geolocate themselves and navigate across the ocean. The method offers a powerful tool for magnetically testing whether putative biological iron oxide particles in Mars samples have a biogenic origin.