Berlin Science Week: Research Delivers – What is Slowing Down the Expansion of Solar Energy?

Thanks to new technologies from research, solar power does not cost more than coal-based electricity; but why is the expansion simply not getting off the ground?

Solar modules could also cover a considerable proportion of the energy requirements in cities - especially if the surfaces on the facades are also used in future. For this purpose, there are now a large number of aesthetically attractive facade solutions that also convert scattered light into electricity and are available in many colors and shapes. More and more solutions are emerging from research that enable even higher efficiencies and even lower module costs. The technologies are there and the kilowatt hour of solar power is no more expensive than coal-fired power. Yet the expansion is not getting off the ground. What is the reason for this?

Photovoltaics researchers from the Helmholtz-Zentrum Berlin (HZB) will meet with representatives from politics and industry in a panel discussion. They will discuss research successes, economic aspects, market strategies, political incentives, construction challenges and what is needed to ensure that more solar power soon finds its way into living rooms.

Panel:

  • Samira Jama Aden (Architect at Helmholtz-Zentrum Berlin | PVcomB | BAIP)
  • Prof. Steve Albrecht (Head of the young investigator group Perowskite Tandem Solar Cells, HZB)
  • Prof. Claudia Kemfert  (German Institute for Economic Research, Head of Department Energy, Transportation, Environment)
  • N.N.

Host: Prof. Rutger Schlatmann (Director of the Competence Centre Photovoltaics Berlin, PVcomB / HZB)

9. November 2020, 17.00 Uhr | Online

sa

  • Copy link

You might also be interested in

  • Battery research: visualisation of aging processes operando
    Science Highlight
    29.04.2025
    Battery research: visualisation of aging processes operando
    Lithium button cells with electrodes made of nickel-manganese-cobalt oxides (NMC) are very powerful. Unfortunately, their capacity decreases over time. Now, for the first time, a team has used a non-destructive method to observe how the elemental composition of the individual layers in a button cell changes during charging cycles. The study, now published in the journal Small, involved teams from the Physikalisch-Technische Bundesanstalt (PTB), the University of Münster, researchers from the SyncLab research group at HZB and the BLiX laboratory at the Technical University of Berlin. Measurements were carried out in the BLiX laboratory and at the BESSY II synchrotron radiation source.
  • New instrument at BESSY II: The OÆSE endstation in EMIL
    Science Highlight
    23.04.2025
    New instrument at BESSY II: The OÆSE endstation in EMIL
    A new instrument is now available at BESSY II for investigating catalyst materials, battery electrodes and other energy devices under operating conditions: the Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) endstation in the Energy Materials In-situ Laboratory Berlin (EMIL). A team led by Raul Garcia-Diez and Marcus Bär showcases the instrument’s capabilities via a proof-of-concept study on electrodeposited copper.
  • Green hydrogen: A cage structured material transforms into a performant catalyst
    Science Highlight
    17.04.2025
    Green hydrogen: A cage structured material transforms into a performant catalyst
    Clathrates are characterised by a complex cage structure that provides space for guest ions too. Now, for the first time, a team has investigated the suitability of clathrates as catalysts for electrolytic hydrogen production with impressive results: the clathrate sample was even more efficient and robust than currently used nickel-based catalysts. They also found a reason for this enhanced performance. Measurements at BESSY II showed that the clathrates undergo structural changes during the catalytic reaction: the three-dimensional cage structure decays into ultra-thin nanosheets that allow maximum contact with active catalytic centres. The study has been published in the journal ‘Angewandte Chemie’.