Berlin Science Week: Die Forschung liefert - was bremst den Ausbau der Solarenergie? (auf Englisch)

Solarstrom kostet dank neuer Technologien aus der Forschung nicht mehr als Kohlestrom; doch warum kommt der Ausbau einfach nicht in Fahrt?

Solarmodule könnten auch in den Städten einen erheblichen Anteil des Energiebedarfs decken - insbesondere wenn man künftig auch die Flächen an den Fassaden nutzt. Dafür gibt es inzwischen eine Vielzahl an ästhetisch ansprechenden Fassadenlösungen, die auch Streulicht in Strom umwandeln und die in vielen Farben und Formen erhältlich sind. Aus der Forschung kommen immer weitere Lösungen, die noch höhere Wirkungsgrade und noch günstigere Modulkosten ermöglichen. Die Technologien sind da und die Kilowattstunde Solarstrom ist nicht teurer als Kohlestrom. Dennoch kommt der Ausbau nicht in Fahrt. Woran liegt das?

In einer Podiumsdiskussion treffen sich Photovoltaik-Forscher aus dem Helmholtz-Zentrum Berlin (HZB) mit Vertretern aus Politik und Industrie. Sie diskutieren Forschungserfolge, ökonomische Aspekte, Marktstrategien, politische Anreize, bauliche Herausforderungen und was es braucht, damit bald mehr Sonnenstrom in den Wohnzimmern landet.

Podiumsteilnehmer:

  • Samira Jama Aden (HZB, Beratungsstelle für bauwerkintegrierte Photovoltaik)
  • Prof. Steve Albrecht (HZB, hält zwei Effizienz-Weltrekorde bei Perovskit-Tandem-Solarzellen)
  • Prof. Claudia Kemfert  (Deutsches Institut für Wirtschaftsforschung, Leiterin der Abteilung Energie, Verkehr, Umwelt)
  • N.N.

Moderation: Prof. Rutger Schlatmann (HZB, Direktor des Kompetenz-Zentrums Photovoltaik Berlin)

9. November 2020, 17.00 Uhr als Online Veranstaltung

sa

  • Link kopieren

Das könnte Sie auch interessieren

  • Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Science Highlight
    15.09.2025
    Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.
  • MXene als „Rahmen“ für zweidimensionale Wasserfilme zeigt neue Eigenschaften
    Science Highlight
    13.08.2025
    MXene als „Rahmen“ für zweidimensionale Wasserfilme zeigt neue Eigenschaften
    Ein internationales Team unter Leitung von Dr. Tristan Petit und Prof. Yury Gogotsi hat MXene mit eingeschlossenem Wasser und Ionen an der BESSY II untersucht. Dabei ging das Wasser mit steigender Temperatur vom Zustand als lokalisierte Eiskluster in einen quasi-zweidimensionalen Wasserfilm über. Das Team entdeckte dabei, dass diese strukturellen Veränderungen des eingeschlossenen Wassers im MXene einen reversiblen Phasenübergang bewirken: vom Metall zum Halbleiter. Dies könnte die Entwicklung neuartiger Bauelemente oder Sensoren auf Basis von MXenen ermöglichen.