Photovoltaic living lab reaches the 100 Megawatt-hour mark

Blick auf die Solarfassade des Reallabors.

Blick auf die Solarfassade des Reallabors. © HZB

About three years ago, the living laboratory at HZB went into operation. Since then, the photovoltaic facade has been generating electricity from sunlight. On September 27, 2024, it reached the milestone of 100 megawatt-hours.

Solar facades offer untapped potential for generating clean electricity. How much they actually deliver and which environmental factors play a role are being studied at HZB's real laboratory. The facade elements installed there have now reached the 100-megawatt-hour mark.

This amount of energy is enough to supply a four-person household in Germany with clean electricity for 30 years. At HZB, the electricity generated by the laboratory’s solar facade is used entirely on-site, which makes the facility particularly economical. According to initial estimates, the additional costs compared to a conventional facade have amortized after 18 years.

What is the Living Lab?

It is a research building on the BESSY II location in Berlin-Adlershof equipped with a photovoltaic facade. A total of 360 frameless, blue-coated modules were installed on the south, west, and north facades of the building. Particular emphasis was placed on ensuring the solar facade elements are aesthetically pleasing.

The living laboratory is equipped with 120 measuring points and sensors for monitoring among others temperature, solar radiation and ventilation. This allows the behavior of the solar modules and the entire PV facade system to be evaluated under different seasonal and weather conditions over a long period.

Findings contribute to the building-integrated photovoltaics advisory service

These insights directly contribute to advisory services, benefiting society as a whole. HZB operates the independent advisory service for building-integrated photovoltaics (BAIP). Experts provide advice to architects, builders and urban planners on technologies, products, design options, technical feasibility, and legal frameworks.

 

sz

  • Copy link

You might also be interested in

  • Green fabrication of hybrid materials as highly sensitive X-ray detectors
    Science Highlight
    08.05.2025
    Green fabrication of hybrid materials as highly sensitive X-ray detectors
    New bismuth-based organic-inorganic hybrid materials show exceptional sensitivity and long-term stability as X-ray detectors, significantly more sensitive than commercial X-ray detectors. In addition, these materials can be produced without solvents by ball milling, a mechanochemical synthesis process that is environmentally friendly and scalable. More sensitive detectors would allow for a reduction in the radiation exposure during X-ray examinations.
  • Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    News
    07.05.2025
    Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    The Federal Institute for Materials Research and Testing (BAM), the Helmholtz-Zentrum Berlin (HZB), and Humboldt University of Berlin (HU Berlin) have signed a memorandum of understanding (MoU) to establish the Berlin Battery Lab. The lab will pool the expertise of the three institutions to advance the development of sustainable battery technologies. The joint research infrastructure will also be open to industry for pioneering projects in this field.
  • Battery research: visualisation of aging processes operando
    Science Highlight
    29.04.2025
    Battery research: visualisation of aging processes operando
    Lithium button cells with electrodes made of nickel-manganese-cobalt oxides (NMC) are very powerful. Unfortunately, their capacity decreases over time. Now, for the first time, a team has used a non-destructive method to observe how the elemental composition of the individual layers in a button cell changes during charging cycles. The study, now published in the journal Small, involved teams from the Physikalisch-Technische Bundesanstalt (PTB), the University of Münster, researchers from the SyncLab research group at HZB and the BLiX laboratory at the Technical University of Berlin. Measurements were carried out in the BLiX laboratory and at the BESSY II synchrotron radiation source.