Solar cells on moon glass for a future base on the moon

Components of a Moon solar cell.

Components of a Moon solar cell. © Felix Lang.

Future settlements on the moon will need energy, which could be supplied by photovoltaics. However, launching material into space is expensive – transporting one kilogram to the moon costs one million euros. But there are also resources on the moon that can be used. A research team led by Dr. Felix Lang of the University of Potsdam and Dr. Stefan Linke of the Technical University of Berlin have now produced the required glass from ‘moon dust’ (regolith) and coated it with perovskite. This could save up to 99 percent of the weight needed to produce PV modules on the moon. The team tested the radiation tolerance of the solar cells at the proton accelerator of the HZB.

“The highlight of our study is that we can extract the glass we need for our solar cells directly from the lunar regolith without any processing,” says project leader Felix Lang, who leads a junior research group at the Institute of Physics and Astronomy, funded by a Freigeist-Fellowship of the VolkswagenStiftung.

The solar cells tested by the researchers have a layered structure, with the substrate and cover layer consisting of Moon glass and the intermediate layer of perovskite. “These solar cells require ultrathin absorber layers of 500 to 800 nanometers only, allowing the fabrication of 400 square meter solar cells with just one kilogram of perovskite raw material brought from Earth,” Lang summarizes.

Lang emphasizes the amazing stability of the solar cells produced against solar and cosmic radiation – an essential prerequisite for a stable energy supply on the moon. The radiation tolerance was tested at the Proton accelerator at HZB in the team of Prof. Andrea Denker.

Read the full text at the website of University of Potsdam:

https://www.uni-potsdam.de/en/headlines-and-featured-stories/detail/2025-04-03-solarzellen-auf-mondglas-photovoltaik-koennte-die-energie-fuer-eine-zukuenftige-basis-au

red./Uni Potsdam

  • Copy link

You might also be interested in

  • Long Night of Science 2025
    News
    18.06.2025
    Long Night of Science 2025
    Welcome!

  • MAX IV and BESSY II initiate new collaboration to advance materials science
    News
    17.06.2025
    MAX IV and BESSY II initiate new collaboration to advance materials science
    Swedish national synchrotron laboratory MAX IV and Helmholtz-Zentrum Berlin (HZB) with BESSY II light source jointly announce the signing of a 5-year Cooperation Agreement. The new agreement establishes a framework to strengthen cooperation for operational and technological development in the highlighted fields of accelerator research and development, beamlines and optics, endstations and sample environments as well as digitalisation and data science.
  • Michael Naguib is visiting HZB as a Humboldt Research Awardee
    News
    16.06.2025
    Michael Naguib is visiting HZB as a Humboldt Research Awardee
    Professor Michael Naguib, from Tulane University in the USA, is one of the discoverers of a new class of 2D materials: MXenes are characterised by a puff pastry-like structure and have many applications, such as in the production of green hydrogen or as storage media for electrical energy. During his Humboldt Research Award in 2025, Professor Naguib is working with Prof Volker Presser at the Leibniz Institute for New Materials in Saarbrücken and with Dr Tristan Petit at HZB.