Oxford PV collaborates with HZB to move perovskite solar cells closer to commercialisation

Oxford PV – The Perovskite Company's industrial site in Brandenburg an der Havel, Germany where the company is working rapidly to transfer its advanced perovskite on silicon tandem solar cell technology to an industrial scale process.

Oxford PV – The Perovskite Company's industrial site in Brandenburg an der Havel, Germany where the company is working rapidly to transfer its advanced perovskite on silicon tandem solar cell technology to an industrial scale process. © Oxford PV

Perovskite solar technology leader Oxford PV collaborates with leading German research centre to support the accelerated transfer of its technology into silicon cell manufacturing lines.

Oxford PVTM – The Perovskite CompanyTM, the leader in the field of perovskite solar cells, today announced its collaboration with Helmholtz-Zentrum Berlin (HZB), the leading German research centre focused on energy materials research.

Oxford PV has made considerable progress in transferring its advanced perovskite on silicon tandem solar cell technology from its laboratory in Oxford, UK to an industrial scale process at its site in Brandenburg an der Havel, Germany.

HZB’s extensive expertise in silicon heterojunctions solar cell technology, will support Oxford PV to further optimise its perovskite on silicon tandem solar cell technology, and demonstrate production scale up, to ensure ease of integration into large scale silicon solar cell and module production.

“Working with HZB to understand solar cell manufacturers’ silicon cells, will allow Oxford PV’s perovskite on silicon tandem formation to be fully optimised, to ensure the most efficient tandem solar cell, and the easy transfer of our technology into our commercial partner’s industrial processes, commented Chris Case, Chief Technology Officer, at Oxford PV,

“Oxford PV is now in the final stage of commercialising its perovskite photovoltaic solution, which has the potential to enable efficiency gains that will transform the economics of silicon photovoltaic technology globally.”

Rutger Schlatmann, Director of the PVcomB institute at HZB, said, “HZB believe that perovskites present a significant opportunity to the future of photovoltaics. For this reason, at our new innovation lab - HySPRINT, we have significantly increased our expertise and attracted some of the most promising young scientists in this field. HZB’s collaboration with Oxford PV is strategically important to the institute, as Oxford PV is the ideal partner to further develop our solar cell technology knowledge and help support the commercialisation of tandem silicon perovskite photovoltaic cells.”

More Information:

  • Oxford PV
  • PVcomB
  • HySPRINT-a Helmholtz Innovation Lab

Oxford PV/HZB

  • Copy link

You might also be interested in

  • Lithium-sulphur pouch cells investigated at BESSY II
    Science Highlight
    08.01.2025
    Lithium-sulphur pouch cells investigated at BESSY II
    A team from HZB and the Fraunhofer Institute for Material and Beam Technology (IWS) in Dresden has gained new insights into lithium-sulphur pouch cells at the BAMline of BESSY II. Supplemented by analyses in the HZB imaging laboratory and further measurements, a new picture emerges of processes that limit the performance and lifespan of this industrially relevant battery type. The study has been published in the prestigious journal Advanced Energy Materials.
  • Largest magnetic anisotropy of a molecule measured at BESSY II
    Science Highlight
    21.12.2024
    Largest magnetic anisotropy of a molecule measured at BESSY II
    At the Berlin synchrotron radiation source BESSY II, the largest magnetic anisotropy of a single molecule ever measured experimentally has been determined. The larger this anisotropy is, the better a molecule is suited as a molecular nanomagnet. Such nanomagnets have a wide range of potential applications, for example, in energy-efficient data storage. Researchers from the Max Planck Institute for Kohlenforschung (MPI KOFO), the Joint Lab EPR4Energy of the Max Planck Institute for Chemical Energy Conversion (MPI CEC) and the Helmholtz-Zentrum Berlin were involved in the study.
  • Catalyst Activation and Degradation in Hydrous Iridium Oxides
    Science Highlight
    10.12.2024
    Catalyst Activation and Degradation in Hydrous Iridium Oxides
    The development of efficient catalysts for the Oxygen Evolution Reaction (OER) is crucial for advancing Proton Exchange Membrane (PEM) water electrolysis, with iridium-based OER catalysts showing promise despite the challenges related to their dissolution. Collaborative research by the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH and the Fritz-Haber-Institut has provided insights into the mechanisms of OER performance and iridium dissolution for amorphous hydrous iridium oxides, advancing the understanding of this critical process.