Perowskitsolarzellen durch Schlitzdüsenbeschichtung – ein Schritt zur industriellen Produktion

Die Beschichtung mit Standard-Tinte (links) erzeugt kleine "Rippen" auf der nassen Dünnschicht. Auch nach der Wärmebehandlung und der darauffolgenden Auskristallisierung der Dünnschicht zeigen sich unter dem Rasterelektronenmikroskop deutliche Inhomogenitäten (rechts).

Die Beschichtung mit Standard-Tinte (links) erzeugt kleine "Rippen" auf der nassen Dünnschicht. Auch nach der Wärmebehandlung und der darauffolgenden Auskristallisierung der Dünnschicht zeigen sich unter dem Rasterelektronenmikroskop deutliche Inhomogenitäten (rechts). © HZB

Mit der optimierten Zusammensetzung der Vorläufertinten wird die Nassschicht nahezu perfekt (links). Die Elektronenmikroskopieaufnahme zeigt: auch der kristallisierte Dünnfilm ist deutlich homogener (rechts).

Mit der optimierten Zusammensetzung der Vorläufertinten wird die Nassschicht nahezu perfekt (links). Die Elektronenmikroskopieaufnahme zeigt: auch der kristallisierte Dünnfilm ist deutlich homogener (rechts). © HZB

Solarzellen aus Metallhalogenid-Perowskiten erreichen hohe Wirkungsgrade und lassen sich mit wenig Energieaufwand aus flüssigen Tinten produzieren. Solche Verfahren untersucht ein Team um Prof. Dr. Eva Unger am Helmholtz-Zentrum Berlin. An der Röntgenquelle BESSY II hat die Gruppe nun gezeigt, wie wichtig die Zusammensetzung von Vorläufertinten für die Erzeugung qualitativ-hochwertiger FAPbI3-Perowskit-Dünnschichten ist. Die mit den besten Tinten hergestellten Solarzellen wurden ein Jahr im Außeneinsatz getestet und auf Minimodulgröße skaliert.

Metallhalogenid-Perowskite gelten als besonders preisgünstige und vielversprechende Materialklasse für Solarmodule der nächsten Generation. Perowskit-Solarzellen können mit Beschichtungsverfahren hergestellt werden, die mit flüssigen Tinten aus Vorläufermaterialien und verschiedenen Lösungsmitteln arbeiten. Im Anschluss an die Beschichtung verdampfen die Lösungsmittel und die Perowskite kristallisieren zu einer im Idealfall homogenen Schicht.

Die Aufskalierung im Blick

Das Team um Prof. Dr. Eva Unger am Helmholtz-Zentrum Berlin hat große Expertise mit diesen Verfahren und untersucht Optionen für die Aufskalierung. „Perowskit-Photovoltaik ist die beste lösungsprozessierbare PV-Technologie, die es gibt", sagt Eva Unger, „aber wir fangen gerade erst an, zu verstehen, wie sich das komplexe Zusammenspiel der Lösungsmittelkomponenten auf die Qualität der Perowskit-Schichten auswirkt."

Tinten mit unterschiedlicher Viskosität

Denn bei der Beschichtung der Halogenid-Perowskit-Schichten auf großen Flächen können ungewollte Inhomogeneitäten auftreten, zum Beispiel rippenartige Strukturen. „Durch Variationen in der Viskosität der Tinte lassen sich solche Effekte minimieren“, sagt Jinzhao Li, der bei Unger promoviert. An BESSY II hat er untersucht, wie sich die verschiedenen Lösungsmittelkombinationen auf die Kristallisation der Perowskit-Filme auswirken. Die besten p-i-n-FAPbI3-Perowskit-Solarzellen erreichen damit im Labormaßstab eine zertifizierte Leistung von 22,3 %. Außerdem stellte Jinzhao Li mit Kolleg*innen im HySPRINT-Innovationslabor und dem PVcomB Mini-Solarmodule (12,6 cm2) her die Wirkungsgrade um die 17 % erzielten.

Ein Jahr im Außeneinsatz getestet

Das Team von Dr. Carolin Ulbrich testete die so optimierten Solarzellen ein Jahr lang am PVcomB-Teststand im Freien. Dabei blieb der Wirkungsgrad im Winter und Frühjahr nahezu stabil, und sank erst in den wärmeren Sommermonaten. „Diese Tests von größeren Modulen unter realen Bedingungen geben uns wertvolle Hinweise, um die Halogenid-Perowskit-Photovoltaik weiter zu verbessern“, sagt Eva Unger.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Mehr Zeit für den Austausch
    Interview
    12.05.2025
    Mehr Zeit für den Austausch
    Der südafrikanische Chemiker Denzil Moodley ist der erste Industrial Research Fellow am HZB. Er ist federführend am Projekt CARE-O-SENE beteiligt. Der Weg zu einem effizienten Katalysator für einen nachhaltigen Flugzeug-Treibstoff soll durch das Fellowship-Programm weiter beschleunigt werden. Im Interview berichtet er über das Projekt und darüber, warum es so entscheidend ist, dass Forschende aus Industrie und öffentlicher Forschung zusammen arbeiten.

  • Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Science Highlight
    08.05.2025
    Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.

  • Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Nachricht
    07.05.2025
    Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Die Bundesanstalt für Materialforschung und -prüfung (BAM), das Helmholtz-Zentrum Berlin (HZB) und die Humboldt-Universität zu Berlin (HU Berlin) haben ein Memorandum of Understanding (MoU) zur Gründung des Berlin Battery Lab unterzeichnet. Das Labor wird die Expertise der drei Institutionen bündeln, um die Entwicklung nachhaltiger Batterietechnologien voranzutreiben. Die gemeinsame Forschungsinfrastruktur soll auch der Industrie für wegweisende Projekte in diesem Bereich offenstehen.