Perowskit/Silizium-Tandemsolarzellen auf dem Weg vom Labor in die Produktion

Die Perowskit Cluster Depositionsanlage „KOALA“ am Helmholtz-Zentrum Berlin ermöglicht Wafer mit Perowskit/Silizium-Tandemsolarzellen im Vakuum herzustellen.

Die Perowskit Cluster Depositionsanlage „KOALA“ am Helmholtz-Zentrum Berlin ermöglicht Wafer mit Perowskit/Silizium-Tandemsolarzellen im Vakuum herzustellen. © HZB

KOALA/KOALA+ - Die am Helmholtz Zentrum Berlin (HZB) errichtete Clusteranlage ermöglicht Wafer mit Perowskit/Silizium-Tandemsolarzellen im Vakuum herzustellen; ausreichend groß, um eine industrielle Produktion abzubilden. Diese weltweit einzigartige Anlage trägt dazu bei, neue industrienahe Prozesse, Materialien und Solarzellen zu entwickeln.

Ziel der Wissenschaftsteams ist es, die Lücke zwischen Forschung und Industrie zu schließen. Dazu haben sie eine neue Anlagentechnologie aufgebaut, um industrieartige Perowskit/Silizium-Tandemsolarzellen mit einem Wirkungsgrad von zunächst 26 Prozent zu entwickeln und herzustellen. Die weltweit einmalige Vakuum-Verdampfungsanlage (technologisch umgesetzt mit den Industriepartnern: Von Ardenne und MBraun/CreaPhys) dampft die aus verschiedenen Materialien bestehende Perowskitabsorberschicht gleichzeitig aus vier oder mehr Quellen homogen und vollflächig auf Siliziumwafer auf. Alle weiteren Kontaktschichten werden in eigenen Prozess-Kammern entwickelt. Das Besondere: Alle Prozesse laufen vollautomatisch und reproduzierbar innerhalb der Anlage - ohne Vakuumbruch - ab. Zudem erlaubt die Clusteranlage, Tandemsolarzellen auf produktionsüblichen Wafergrößen herzustellen und damit die Prozesse vom Labor auf Industriemaßstab zu skalieren.

BR


Das könnte Sie auch interessieren

  • Gefriergussverfahren – Eine Anleitung für komplex strukturierte Materialien
    Science Highlight
    25.04.2024
    Gefriergussverfahren – Eine Anleitung für komplex strukturierte Materialien
    Gefriergussverfahren sind ein kostengünstiger Weg, um hochporöse Materialien mit hierarchischer Architektur, gerichteter Porosität und multifunktionalen inneren Oberflächen herzustellen. Gefriergegossene Materialien eignen sich für viele Anwendungen, von der Medizin bis zur Umwelt- und Energietechnik. Ein Beitrag im Fachjournal „Nature Reviews Methods Primer“ vermittelt nun eine Anleitung zu Gefriergussverfahren, zeigt einen Überblick, was gefriergegossene Werkstoffe heute leisten, und skizziert neue Einsatzbereiche. Ein besonderer Fokus liegt auf der Analyse dieser Materialien mit Tomoskopie.

  • IRIS-Beamline an BESSY II mit Nanomikroskopie erweitert
    Science Highlight
    25.04.2024
    IRIS-Beamline an BESSY II mit Nanomikroskopie erweitert
    Die Infrarot-Beamline IRIS am Speicherring BESSY II bietet nun eine vierte Option, um Materialien, Zellen und sogar Moleküle auf verschiedenen Längenskalen zu charakterisieren. Das Team hat die IRIS-Beamline mit einer Endstation für Nanospektroskopie und Nanoimaging erweitert, die räumliche Auflösungen bis unter 30 Nanometer ermöglicht. Das Instrument steht auch externen Nutzergruppen zur Verfügung.
  • Einfachere Herstellung von anorganischen Perowskit-Solarzellen bringt Vorteile
    Science Highlight
    17.04.2024
    Einfachere Herstellung von anorganischen Perowskit-Solarzellen bringt Vorteile
    Anorganische Perowskit-Solarzellen aus CsPbI3 sind langzeitstabil und erreichen gute Wirkungsgrade. Ein Team um Prof. Antonio Abate hat nun an BESSY II Oberflächen und Grenzflächen von CsPbI3 -Schichten analysiert, die unter unterschiedlichen Bedingungen produziert wurden. Die Ergebnisse belegen, dass das Ausglühen in Umgebungsluft die optoelektronischen Eigenschaften des Halbleiterfilms nicht negativ beeinflusst, sondern sogar zu weniger Defekten führt. Dies könnte die Massenanfertigung von anorganischen Perowskit-Solarzellen weiter vereinfachen.