HZB-Team entwickelt Chalkopyrit-Solarzellen ohne Kadmium-haltige Pufferschicht

Chalkoyprit-Dünnschichtsolarzellen bestehen in der Regel aus fünf Schichten (links). Am HZB ist es gelungen, die kadmium-haltige Pufferschicht einzusparen. Dies vereinfacht den Herstellungsprozess erheblich.

Chalkoyprit-Dünnschichtsolarzellen bestehen in der Regel aus fünf Schichten (links). Am HZB ist es gelungen, die kadmium-haltige Pufferschicht einzusparen. Dies vereinfacht den Herstellungsprozess erheblich. © R. Klenk/HZB

Eine einzige Schicht übernimmt die Funktion von vormals zwei Schichten, das nasschemische Verfahren entfällt. Trotz der vereinfachten Herstellung sind Wirkungsgrade von über 18 Prozent erreichbar.

Eine Chalkoyprit-Dünnschichtsolarzelle besteht in der Regel aus fünf Schichten, die jeweils eine ganz bestimmte elektronische Funktion erfüllen. Jede dieser Schichten ist über die Jahre optimiert worden, so dass Chalkopyrit-Solarzellen inzwischen sehr hohe Wirkungsgrade von mehr als 20 Prozent erreichen. Andererseits ist es wirtschaftlich interessant, die Produktionsschritte zu reduzieren und die Funktionalität verschiedener Schichten in einer Einzelnen zusammenzufassen. „Eine Schicht, die man besonders gerne einsparen würde, ist die Pufferschicht aus einer Kadmium-Schwefel-Verbindung“, erklärt Dr. Reiner Klenk vom Institut für Heterogene Materialsysteme am HZB. Denn diese Schicht wird in einem nass-chemischen Verfahren hergestellt,  das problematische Chemikalien benötigt und sich schlecht in die Kette der ansonsten trockenen, physikalischen Abscheidemethoden integrieren lässt.
Die HZB-Forscher haben nun die über der Pufferschicht liegende i-Zinkoxid-Schicht so modifiziert, dass sie die Funktion der Pufferschicht mit übernimmt.

Diese Zinkoxid-Schicht wird  dadurch hergestellt, dass ein Zinkoxid-Target als Kathode mit Plasma zerstäubt wird und sich auf der Probe ablagert. . Dieser Prozess ist als Sputtern bekannt. Ob es auch funktionieren würde direkt  auf die Chalkopyrit-Absorberschicht zu sputtern, war allerdings unklar. Denn die Chalkopyrit-Schicht gilt als empfindlich, eine Aufgabe der Pufferschicht sollte gerade darin bestehen, diese empfindliche Schicht vor dem Beschuss mit energetischen Teilchen während der Kathodenzerstäubung zu schützen. Tatsächlich war in früheren Arbeiten stets ein Verlust an Wirkungsgrad zu beobachten.

Auf die Mischung kommt es an:

„Der Durchbruch wurde schließlich dadurch erzielt, dass wir für die i-Schicht  eine Verbindung aus Zink (Zn), Sauerstoff (O) und Schwefel (S) gewählt haben“, erklärt Alexander Steigert. Dafür zerstäubten sie zunächst in einer Anlage mit angeflanschtem Oberflächenanalysesystem („CISSY“) eine ZnS-Kathode in Gasgemischen mit unterschiedlichem Sauerstoffanteil. Die Schichteigenschaften als Funktion des S/(S+O) Verhältnisses wurden bestimmt und erste Bauelemente gefertigt, die gut funktionierten. Nachdem das optimale Verhältnis gefunden war, wurde ein entsprechend gemischtes Target eingebaut. Klenk: „Wir haben gezeigt, dass das funktioniert. In der Produktion müsste man lediglich das ZnO-Target durch ein ZnO/ZnS-Target mit festem Mischungsverhältnis ersetzen und könnte dadurch auf die vorangehende Abscheidung einer dedizierten Pufferschicht vollständig verzichten. Ein trockener, Cd-freier in-line Prozess wäre ohne große Investition realisiert.“

Wirkungsgrad von 18,3 Prozent im Labor erreicht

Im Labor funktioniert dies jetzt ohne Einbußen an Wirkungsgrad. Bis zu 18.3 Prozent haben die HZB-Forscher erreicht, was Messungen durch das renommierte ISE Fraunhofer-Institut in Freiburg bestätigt haben. Im Gegensatz zu anderen Ansätzen für Kadmium-freie Solarzellen ist weder eine Vorbehandlung der Oberfläche noch eine nachträgliche Temperaturbehandlung erforderlich. „Es gibt sogar noch Spielraum, um den Wirkungsgrad des Standard-Modules zu verbessern“, meint Klenk.

Das Verfahren ist für die Industrie interessant

„Neben dem wissenschaftlichen Interesse hat uns auch durchaus die Perspektive motiviert, dass dieses Verfahren für die Industrie viel einfacher wäre. Wir haben unsere Technologie erfolgreich auf Substraten aus industrieller Produktion getestet. Im NeuMaS-Projekt (Manz, Bosch CISTech) wollen wir mehrere Ansätze für Cd-freie Module bewerten, um zu bestimmen, welche Technologie am besten in der Produktion eingesetzt werden kann“, erklärt Prof. Dr. Martha Lux-Steiner, die das Institut für Heterogene Materialsysteme leitet.

Solarmodule ohne Kadmium

Die Hersteller bereiten sich darauf vor, dass zukünftig Kadmium im Modul nicht mehr enthalten sein darf, sodass eine Umstellung der Technologie voraussichtlich unvermeidlich ist. Es wird geschätzt, dass die Abscheidung der Pufferschicht bis zu 5 Cent bezogen auf ein Watt Nennleistung des Modules kostet. „Bei einer größeren Produktionsanlage (1 GWp/a) könnten mit unserer Technologie potentiell jährlich mehrere Millionen € eingespart werden“, so Klenk.

So könnte in der industriellen Produktion die Zink-Oxid-Sulfid Schicht aufgesputtert werden und danach einfach die nächste Schicht mit einem Aluminium-dotierten Zinkoxid-Target. Der nasschemische Prozess für die Pufferschicht entfällt. „Wir haben nicht nur gezeigt, dass das funktioniert, sondern auch, dass diese Zellen das Potential für höchste Wirkungsgrade besitzen“, betont Christian Kaufmann, in dessen Gruppe Chalkopyrit-Schichten von hoher Qualität erforscht werden.

Größere Flächen und Langzeitstabilität

Jetzt baut die Gruppe um Klenk eine Sputteranlage um, um auch größere Flächen gleichmäßig beschichten zu können. „Dann können wir CIGSe-Module von 30 auf 30 Zentimetern produzieren und werden auch die Langzeitstabilität untersuchen, schließlich geht es uns perspektivisch darum, dass dieses neue umweltfreundlichere Verfahren auch für die Industrie interessant ist und hocheffiziente, stabile Solarmodule liefern kann“, sagt Klenk.

Mehr Informationen:
Prog. Photovolt. (2013) DOI: 10.1002/pip.2445
http://onlinelibrary.wiley.com/doi/10.1002/pip.2445/abstract

Über erste Tests mit industriell gefertigen Chalkopyrit-Schichten gibt es ebenfalls bereits einen Bericht.

arö

Das könnte Sie auch interessieren

  • HZB erhält Fördermittel, um Innovationen rascher nutzbar zu machen
    Nachricht
    23.03.2023
    HZB erhält Fördermittel, um Innovationen rascher nutzbar zu machen
    Die Helmholtz-Gemeinschaft hat drei neue Innovationsplattformen ausgewählt, die nun gefördert werden. An zweien davon ist das HZB beteiligt: Die Innovationsplattform zu Beschleunigertechnologien HI-ACTS soll moderne Beschleuniger für vielfältige Anwendungen öffnen, während die Innovationsplattform Solar TAP neue Ideen aus den Laboren der Photovoltaikforschung rascher in die Anwendung bringen soll. Insgesamt erhält das HZB aus Mitteln des Pakts für Forschung und Innovation in den kommenden drei Jahren 4,2 Millionen Euro an Zuwendungen.

  • Urban Innovation Forum 2023
    Nachricht
    22.03.2023
    Urban Innovation Forum 2023
    Urban Innovation Forum UIF 2023 ist eine Plattform für urbane Invovationsstreibende, Kreativen, Unternehmer*innen und Experten, die innovative grüne Technologien für eine nachhaltige Transformation urbaner Räume beschleunigen wollen. In Gespächsrunden werden die Themen  Urban Tech, Green Buildings, Green Grid, Mobility, VC & Financing in Climate Tech und Green Leadership beleuchtet:

    Datum: Donnerstag 30.03. 2023

    Ort: The Drivery, Mariendorfer Damm 1, 12099 Berlin 

    Die Präzensveranstaltung findet in englischer Spracher statt.

    Session

    14:45 - 15:30 Uhr GREEN BUILDINGS & PROPTECH

    Wie kann die Energieversorgung von Gebäuden, Infrastrukturen und Städten vollständig entkarbonisiert werden? Brauchen wir neue Geschäftsmodelle für eine dezentralisierte und nachhaltige Energieerzeugung? Wie können wir die Klimaziele im Wohnungsbau und in gewerblichen Gebäuden erreichen?

    Sprecher*innen:

    Samira Aden, Helmholtz-Zentrum Berlin // Karolina Attspodina, WeDoSolar // Fabian Reetz, Everyone Energy //Gerrit Peters, Below2 // Moderation: Totinia Hörner

    The UIF 2023 ist eine Partner Veranstaltung des Berlin Energy Transition Dialogue (BETD) des Auswärtigen Amts.

  • Grüner Wasserstoff: Wie photoelektrochemische Zellen wettbewerbsfähig werden könnten
    Science Highlight
    20.03.2023
    Grüner Wasserstoff: Wie photoelektrochemische Zellen wettbewerbsfähig werden könnten
    Mit Sonnenlicht lässt sich grüner Wasserstoff in photoelektrochemischen Zellen (PEC) direkt aus Wasser erzeugen. Bisher waren Systeme, die auf diesem 'direkten Ansatz' basieren, energetisch nicht wettbewerbsfähig. Die Bilanz ändert sich jedoch, sobald ein Teil des Wasserstoffs in PEC-Zellen in-situ für erwünschte Reaktionen genutzt wird. Dadurch lassen sich wertvolle Chemikalien für die chemische und pharmazeutische Industrie produzieren. Die Zeit für die Energie-Rückgewinnung des direkten Ansatztes mit der PEC-Zelle kann damit drastisch verkürzt werden, zeigt eine neue Studie aus dem HZB.