BerOSE - Joint Lab für Modellierung von Nanooptischen Strukturen

Schon auf der Eröffnungsveranstaltung war das HZB gut vertreten. Viele Arbeitsgruppen freuen sich nun auf die enge Zusammenarbeit im neuen Joint Lab mit den Kolleginnen und Kollegen aus der Theorie und der Simulation. Foto: Andreas Kubatzki/HZB

Schon auf der Eröffnungsveranstaltung war das HZB gut vertreten. Viele Arbeitsgruppen freuen sich nun auf die enge Zusammenarbeit im neuen Joint Lab mit den Kolleginnen und Kollegen aus der Theorie und der Simulation. Foto: Andreas Kubatzki/HZB

HZB gründet mit FU Berlin und Zuse Institut Berlin das „Berlin Joint Lab for Optical Simulations for Energy Research (BerOSE)“

Im Joint Lab werden die speziellen Erfahrungen der Partnerinstitutionen in experimenteller und theoretischer Forschung sowie im Scientific Computing zusammengeführt. „Für die wissenschaftliche und technologische Entwicklung von komplexen nanostrukturierten Materialien für die solare Energieerzeugung und für solare Brennstoffe sind voraussagende und unterstützende dreidimensionale optische Simulationen unentbehrlich“, erklärt Prof. Dr. Christiane Becker vom HZB.

Das Joint Lab baut auf der mehrjährigen Kooperation der Partner zu Dünnschicht-Solarzellen auf. Die Wissenschaftlerinnen und Wissenschaftler im Joint Lab konzentrieren sich nun auf Nanoplasmonik in Solarzellen, künstliche Photosynthese, nanooptische Konzepte für die Sensorik und funktionale optische Komponenten. Die geplante Forschung beinhaltet Fragestellungen aus Elektrodynamik, Moleküldynamik, Reaktionskinetik, Fluiddynamik.

Insgesamt hat das HZB mit dem Joint Lab BerOSE bereits acht gemeinsame Forschungsplattformen mit Universitäten und weiteren Partnern zu konkreten Forschungsfeldern eingerichtet. Inzwischen gelten die Joint Labs als Modell für eine langfristige Forschungszusammenarbeit zwischen außeruniversitären und universitären Forschungspartnern.

Einweihung BerOSE Joint Lab:

WANN: Am Dienstag, den 17. Februar 2015, um 10:00 Uhr
Wo: Im Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7, 14195 Berlin

Zur Homepage des BerOSE am ZIB

Mehr zu den Joint Labs des HZB erfahren sie hier:

arö


Das könnte Sie auch interessieren

  • Unkonventionelle Piezoelektrizität in ferroelektrischem Hafnium
    Science Highlight
    26.02.2024
    Unkonventionelle Piezoelektrizität in ferroelektrischem Hafnium
    Hafniumoxid-Dünnschichten sind eine faszinierende Klasse von Materialien mit robusten ferroelektrischen Eigenschaften im Nanometerbereich. Während das ferroelektrische Verhalten ausgiebig untersucht wurde, blieben die Ergebnisse zu den piezoelektrischen Effekten bisher rätselhaft. Eine neue Studie zeigt nun, dass die Piezoelektrizität in ferroelektrischen Hf0,5Zr0,5O2-Dünnschichten durch zyklische elektrische Felder dynamisch verändert werden kann. Ein weiteres bahnbrechendes Ergebnis ist die Möglichkeit einer intrinsischen nicht-piezoelektrischen ferroelektrischen Verbindung. Diese unkonventionellen Eigenschaften von Hafnia bieten neue Optionen für den Einsatz in der Mikroelektronik und Informationstechnologie.
  • 14 Parameter auf einen Streich: Neues Instrument für die Optoelektronik
    Science Highlight
    21.02.2024
    14 Parameter auf einen Streich: Neues Instrument für die Optoelektronik
    Ein HZB-Physiker hat eine neue Methode entwickelt, um Halbleiter durch einen einzigen Messprozess umfassend zu charakterisieren. Der „Constant Light-Induced Magneto-Transport (CLIMAT)“ basiert auf dem Hall-Effekt und ermöglicht es, 14 verschiedene Parameter von negativen wie positiven Ladungsträgern zu erfassen. An zwölf unterschiedlichen Halbleitermaterialien demonstrierte nun ein großes Team die Tauglichkeit dieser neuen Methode, die sehr viel Arbeit spart. 
  • Natrium-Ionen-Akkus: wie Doping die Kathoden verbessert
    Science Highlight
    20.02.2024
    Natrium-Ionen-Akkus: wie Doping die Kathoden verbessert
    Natrium-Ionen-Akkus haben noch eine Reihe von Schwachstellen, die durch die Optimierung von Batteriematerialien behoben werden könnten. Eine Option ist die Dotierung des Kathodenmaterials mit Fremdelementen. Ein Team von HZB und Humboldt-Universität zu Berlin hat nun die Auswirkung von einer Dotierung mit Scandium und Magnesium untersucht. Um ein vollständiges Bild zu erhalten, hatten die Forscher*innen Messdaten an den Röntgenquellen BESSY II, PETRA III und SOLARIS gesammelt und ausgewertet. Sie entdeckten dadurch zwei konkurrierende Mechanismen, die über die Stabilität der Kathoden entscheiden.