Universität Bielefeld und HZB kooperieren zu Nanoschichten und komplexen Materialien

Anke Kaysser-Pyzalla, Thomas Frederking, Gerhard Sagerer und Stephan Becker (v. l.) unterzeichnen den Kooperationsvertrag.Foto: Universität Bielefeld

Anke Kaysser-Pyzalla, Thomas Frederking, Gerhard Sagerer und Stephan Becker (v. l.) unterzeichnen den Kooperationsvertrag.Foto: Universität Bielefeld

Im Februar 2015 haben Uni-Rektor Professor Dr.-Ing. Gerhard Sagerer, Uni-Kanzler Dr. Stephan Becker und die Geschäftsführer des HZB, Professorin Dr.-Ing. Anke Kaysser-Pyzalla und Thomas Frederking eine Vereinbarung über die Zusammenarbeit unterschrieben. Darin heißt es: „Die Kooperation soll zur Steigerung der wissenschaftlichen Exzellenz der Partner und zur Entwicklung regionaler Kompetenznetzwerke in Forschung, Lehre und Ausbildung des wissenschaftlichen Nachwuchses beitragen.“

Die HZB-Spitze besuchte im Februar die Universität Bielefeld, speziell die Laborräume für Helium-Ionen-Mikroskopie, für die Herstellung ultradünner Schichtsysteme sowie für Kleinwinkelröntgenstreuung und Polymer-Charakterisierung. Außerdem wurde der neue Ersatzneubau für die Experimentalphysik besichtigt. In Gesprächen mit dem Physiker Professor Dr. Günter Reiss, Arbeitsgruppe Dünne Schichten & Physik der Nanostrukturen, und dem Chemiker Professor Dr. Thomas Hellweg, Arbeitsgruppe Physikalische und Biophysikalische Chemie, wurden konkrete Inhalte der weiteren Zusammenarbeit ausgelotet: Geräte und Einrichtungen sollen gemeinsam genutzt werden, Wissenschaftliche Beschäftige des HZB sollen an der Universität lehren können und Professuren sollen gemeinsam berufen werden. Dafür legt die Vereinbarung den Grundstein. 

Zusammenarbeit seit 2013

Die beiden Institutionen arbeiten bereits seit 2013 zusammen: Im DFG- geförderten Schwerpunktprogramm „Topologische Isolatoren“ erforschen Physikerinnen und Physiker der Universität Bielefeld und des HZB Materialien mit neuen Quanteneigenschaften für künftige Elektronik-Bauelemente. Die Bielefelder Chemie kooperiert darüber hinaus in einem vom BMBF geförderten Verbundforschungsvorhaben mit dem HZB: Gemeinsam sollen neue experimentelle Möglichkeiten zur Untersuchung von Nanomaterialien entwickelt werden.

Schwerpunkte an der Uni Bielefeld

Die Universität Bielefeld hat sich in ihrem Profilschwerpunkt Molekular- und Nanowissenschaften an den Schnittstellen zwischen Physik, Chemie, Biologie und Bioinformatik national und international sichtbar positioniert. Die aktuellen Forschungsschwerpunkte reichen von der Physik und Chemie molekularer Einzelprozesse in organischen Systemen über Nanoschichten und Nanopartikel bis hin zur Erforschung bakterieller, pflanzlicher und tierischer Zellen.


Uni Bielefeld/HZB


Das könnte Sie auch interessieren

  • Schlüsselrolle von Nickel-Ionen im Simons-Prozess entdeckt
    Science Highlight
    21.05.2024
    Schlüsselrolle von Nickel-Ionen im Simons-Prozess entdeckt
    Forscher*innen der Bundesanstalt für Materialforschung und -prüfung (BAM) und der Freien Universität Berlin haben erstmals den genauen Mechanismus des Simons-Prozesses entschlüsselt. Das interdisziplinäre Forschungsteam nutzte dafür die Synchrotronquelle BESSY II am Helmholtz-Zentrum Berlin.

  • Indiumphosphid bei der Arbeit zugeschaut
    Science Highlight
    15.05.2024
    Indiumphosphid bei der Arbeit zugeschaut
    Indiumphosphid ist ein vielfältig einsetzbarer Halbleiter. Das Material lässt sich für Solarzellen, zur Wasserstoffgewinnung und sogar für Quantencomputer nutzen – und das mit rekordverdächtiger Effizienz. Was dabei an seiner Oberfläche vor sich geht, ist bisher aber kaum erforscht. Diese Lücke haben Forschende jetzt geschlossen und mit ultraschnellen Lasern die Dynamik der Elektronen im Material unter die Lupe genommen.
  • Gefriergussverfahren – Eine Anleitung für komplex strukturierte Materialien
    Science Highlight
    25.04.2024
    Gefriergussverfahren – Eine Anleitung für komplex strukturierte Materialien
    Gefriergussverfahren sind ein kostengünstiger Weg, um hochporöse Materialien mit hierarchischer Architektur, gerichteter Porosität und multifunktionalen inneren Oberflächen herzustellen. Gefriergegossene Materialien eignen sich für viele Anwendungen, von der Medizin bis zur Umwelt- und Energietechnik. Ein Beitrag im Fachjournal „Nature Reviews Methods Primer“ vermittelt nun eine Anleitung zu Gefriergussverfahren, zeigt einen Überblick, was gefriergegossene Werkstoffe heute leisten, und skizziert neue Einsatzbereiche. Ein besonderer Fokus liegt auf der Analyse dieser Materialien mit Tomoskopie.