Mikro- und Makroskopische Veränderungen im Innern von Materialien filmen:

Die Skizze zeigt den Strahlverlauf durch die Probe an EDDI. Die Hochgeschwindigkeitskamera befindet sich über der Probe.

Die Skizze zeigt den Strahlverlauf durch die Probe an EDDI. Die Hochgeschwindigkeitskamera befindet sich über der Probe. © Marlen Paeplow/HZB

Die EDDI-Beamline an BESSY II leistet nun noch deutlich mehr: Seit Kurzem ist es möglich, auch hochaufgelöste dreidimensionale Bilder des mikroskopischen Aufbaus zu erhalten, und zwar mit einer Geschwindigkeit von bis zu vier Bildern pro Sekunde. Zeitgleich kann wie zuvor Röntgenbeugung (Energie-dispersive Diffraktion) durchgeführt werden, die Rückschlüsse auf die kristalline Struktur des Materials zulässt.

Die Beamline-Verantwortlichen Dr. Catalina Jiménez und Dr. Francisco García-Moreno haben diese Neuerung Ende 2013 vorgeschlagen und jetzt erfolgreich umgesetzt. Denn EDDI nutzt das komplette Energiespektrum der BESSY II-Röntgenpulse aus, um damit rasche Beugungsbilder der Proben zu erstellen, welche Aufschluss über den kristallinen Aufbau und den Abstand der Atome in der Probe geben.

Der neue Messkopf:

Ein Teil des Röntgenlichts geht dabei jedoch ungenutzt durch die Probe durch. Dieser Strahl kann nun über einen Szintillator-Kristall in sichtbares Licht umgewandelt und in einer Kamera aufgezeichnet werden. Durch Drehen der Probe erhält man dreidimensionale Abbildungen, die sogenannte Tomografie. Die Umsetzung war nicht trivial: So musste der Messkopf mit dem Szintillator-Kristall nahe der Probe Platz finden, ohne die Strahlführung der Diffraktion zu behindern. „Wir haben dafür eng mit der HZB-Werkstatt zusammengearbeitet“, berichtet García-Moreno.

Prozesse in Energiematerialien 

Der Probentisch ist drehbar und besitzt Schleifkontakte, sodass zum Beispiel Batterien während des Ladeprozesses untersucht werden können. Auch gibt es verschiedene Möglichkeiten, die Probe während der Messung aufzuheizen oder abzukühlen. „Damit können wir zum Beispiel beobachten, welche Veränderungen in Batterien beim Aufladen ablaufen, wie sich Wasserstoff in Stahl einlagert, aber auch viele andere Fragen an Energiematerialien untersuchen“, erklärt Catalina Jiménez.

Bis zu vier Tomografien pro Sekunde

Inzwischen hat das Team gezeigt, dass die Erweiterung sogar noch leistungsfähiger ist, als erwartet: „Wir sind ursprünglich davon ausgegangen, dass eine vollständige Tomografie einer Probe mehrere Sekunden dauert. Doch jetzt schaffen wir sogar gleichzeitig bis zu eine Tomografie und ein Diffraktionsspektrum pro Sekunde oder bis vier Tomografien pro Sekunde. Das heißt, wir können auch schnelle Veränderungen in Proben sehr gut beobachten, wir filmen sie und können sie mit den entsprechenden Phasen korrelieren“, sagt García-Moreno. Diese Option ist bereits in dem Userbetrieb aufgenommen worden und erste Nutzergruppen mit interessanten Fragestellungen haben sich schon angemeldet.

arö


Das könnte Sie auch interessieren

  • Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Science Highlight
    17.07.2024
    Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Die besonderen Eigenschaften von magnetischen Materialien aus der Gruppe der Seltenen Erden gehen auf Elektronen in der 4f-Schale zurück. Bislang galten die magnetischen Eigenschaften der 4f-Elektronen als kaum kontrollierbar. Nun hat ein Team von HZB, der Freien Universität Berlin und weiteren Einrichtungen erstmals gezeigt, dass durch Laserpulse 4f-Elektronen beeinflusst – und damit deren magnetische Eigenschaften verändert werden können. Die Entdeckung, die durch Experimente am EuXFEL und FLASH gelang, weist einen neuen Weg zu Datenspeichern mit Seltenen Erden.
  • BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Science Highlight
    09.07.2024
    BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Feststoffbatterien können mehr Energie speichern und sind sicherer als Batterien mit flüssigen Elektrolyten. Allerdings halten sie nicht so lange und ihre Kapazität nimmt mit jedem Ladezyklus ab. Doch das muss nicht so bleiben: Forscherinnen und Forscher sind den Ursachen bereits auf der Spur. In der Fachzeitschrift ACS Energy Letters stellt ein Team des HZB und der Justus-Liebig-Universität Gießen eine neue Methode vor, um elektrochemische Reaktionen während des Betriebs einer Feststoffbatterie mit Photoelektronenspektroskopie an BESSY II genau zu verfolgen. Die Ergebnisse helfen, Batteriematerialien und -design zu verbessern.

  • HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Nachricht
    09.07.2024
    HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Auf der Suche nach dem perfekten Katalysator bekommt HZB-Forscher Robert Seidel nun Rückenwind – durch einen hochkarätigen ERC Consolidator Grant. In der Titelgeschichte stellen wir vor, warum die Röntgenquelle BESSY II für sein Vorhaben eine wichtige Rolle spielt.